A binding site for homeodomain and Pax proteins is necessary for L1 cell adhesion molecule gene expression by Pax-6 and bone morphogenetic proteins. (9/1799)

The cell adhesion molecule L1 regulates axonal guidance and fasciculation during development. We previously identified the regulatory region of the L1 gene and showed that it was sufficient for establishing the neural pattern of L1 expression in transgenic mice. In the present study, we characterize a DNA element within this region called the HPD that contains binding motifs for both homeodomain and Pax proteins and responds to signals from bone morphogenetic proteins (BMPs). An ATTA sequence within the core of the HPD was required for binding to the homeodomain protein Barx2 while a separate paired domain recognition motif was necessary for binding to Pax-6. In cellular transfection experiments, L1-luciferase reporter constructs containing the HPD were activated an average of 4-fold by Pax-6 in N2A cells and 5-fold by BMP-2 and BMP-4 in Ng108 cells. Both of these responses were eliminated on deletion of the HPD from L1 constructs. In transgenic mice, deletion of the HPD from an L1-lacZ reporter resulted in a loss of beta-galactosidase expression in the telencephalon and mesencephalon. Collectively, our experiments indicate that the HPD regulates L1 expression in neural tissues via homeodomain and Pax proteins and is likely to be a target of BMP signaling during development.  (+info)

Ectopic bone morphogenetic proteins 5 and 4 in the chicken forebrain lead to cyclopia and holoprosencephaly. (10/1799)

Proper dorsal-ventral patterning in the developing central nervous system requires signals from both the dorsal and ventral portions of the neural tube. Data from multiple studies have demonstrated that bone morphogenetic proteins (BMPs) and Sonic hedgehog protein are secreted factors that regulate dorsal and ventral specification, respectively, within the caudal neural tube. In the developing rostral central nervous system Sonic hedgehog protein also participates in ventral regionalization; however, the roles of BMPs in the developing brain are less clear. We hypothesized that BMPs also play a role in dorsal specification of the vertebrate forebrain. To test our hypothesis we implanted beads soaked in recombinant BMP5 or BMP4 into the neural tube of the chicken forebrain. Experimental embryos showed a loss of the basal telencephalon that resulted in holoprosencephaly (a single cerebral hemisphere), cyclopia (a single midline eye), and loss of ventral midline structures. In situ hybridization using a panel of probes to genes expressed in the dorsal and ventral forebrain revealed the loss of ventral markers with the maintenance of dorsal markers. Furthermore, we found that the loss of the basal telencephalon was the result of excessive cell death and not a change in cell fates. These data provide evidence that BMP signaling participates in dorsal-ventral patterning of the developing brain in vivo, and disturbances in dorsal-ventral signaling result in specific malformations of the forebrain.  (+info)

Role of Pitx1 upstream of Tbx4 in specification of hindlimb identity. (11/1799)

In spite of recent breakthroughs in understanding limb patterning, the genetic factors determining the differences between the forelimb and the hindlimb have not been understood. The genes Pitx1 and Tbx4 encode transcription factors that are expressed throughout the developing hindlimb but not forelimb buds. Misexpression of Pitx1 in the chick wing bud induced distal expression of Tbx4, as well as HoxC10 and HoxC11, which are normally restricted to hindlimb expression domains. Wing buds in which Pitx1 was misexpressed developed into limbs with some morphological characteristics of hindlimbs: the flexure was altered to that normally observed in legs, the digits were more toe-like in their relative size and shape, and the muscle pattern was transformed to that of a leg.  (+info)

FGF8 functions in the specification of the right body side of the chick. (12/1799)

Left-right asymmetry in vertebrate embryos is first recognisable using molecular markers that encode secreted proteins or transcription factors. The asymmetry becomes morphologically obvious in the turning of the embryo and in the development of the heart, the gut and other visceral organs. In the chick embryo, a signalling pathway for the specification of the left body side was demonstrated. Here, Sonic hedgehog (Shh) protein is the first asymmetric signal identified in the node [1] [2]. Further downstream in this pathway are the left-specific genes nodal, lefty-1, lefty-2 and Pitx2 [1] [3] [4] [5]. On the right body side, a function of the activin pathway is indicated by the right-sided expression of cActRIIa [1] [6]. We detected that another key molecule in vertebrate development, fibroblast growth factor 8 (FGF8) [7] [8], is expressed asymmetrically on the right side of the posterior node. We demonstrate that transcription of FGF8 is induced by activin and the FGF8 protein inhibits the expression of nodal and Pitx2 and leads to expression of the chicken snail related gene (cSnR) [9]. Left-sided application of FGF8 randomises the direction of heart looping.  (+info)

Pax3 functions in cell survival and in pax7 regulation. (13/1799)

In developing vertebrate embryos, Pax3 is expressed in the neural tube and in the paraxial mesoderm that gives rise to skeletal muscles. Pax3 mutants develop muscular and neural tube defects; furthermore, Pax3 is essential for the proper activation of the myogenic determination factor gene, MyoD, during early muscle development and PAX3 chromosomal translocations result in muscle tumors, providing evidence that Pax3 has diverse functions in myogenesis. To investigate the specific functions of Pax3 in development, we have examined cell survival and gene expression in presomitic mesoderm, somites and neural tube of developing wild-type and Pax3 mutant (Splotch) mouse embryos. Disruption of Pax3 expression by antisense oligonucleotides significantly impairs MyoD activation by signals from neural tube/notochord and surface ectoderm in cultured presomitic mesoderm (PSM), and is accompanied by a marked increase in programmed cell death. In Pax3 mutant (Splotch) embryos, MyoD is activated normally in the hypaxial somite, but MyoD-expressing cells are disorganized and apoptosis is prevalent in newly formed somites, but not in the neural tube or mature somites. In neural tube and somite regions where cell survival is maintained, the closely related Pax7 gene is upregulated, and its expression becomes expanded into the dorsal neural tube and somites, where Pax3 would normally be expressed. These results establish that Pax3 has complementary functions in MyoD activation and inhibition of apoptosis in the somitic mesoderm and in repression of Pax7 during neural tube and somite development.  (+info)

Egr-1 is a downstream effector of GnRH and synergizes by direct interaction with Ptx1 and SF-1 to enhance luteinizing hormone beta gene transcription. (14/1799)

Pituitary gonadotropins are critical regulators of gonadal development and function. Expression and secretion of the mature hormones are regulated by gonadotropin-releasing hormone (GnRH), which is itself secreted from the hypothalamus. GnRH stimulation of gonadotropin expression and secretion occurs through the G-protein-linked phospholipase C/inositol triphosphate intracellular signaling pathway, which ultimately leads to protein kinase C (PKC) activation and increased intracellular calcium levels. Transcription factors mediating the effects of GnRH-induced signals on transcription of gonadotropin genes have not yet been identified. Recent studies have identified key factors involved in luteinizing hormone beta (LHbeta) gonadotropin gene transcription: the nuclear receptor SF-1, the bicoid-related homeoprotein Ptx1 (Pitx1), and the immediate-early Egr-1 gene. We now show that GnRH is a potent stimulator of Egr-1, but not Ptx1 or SF-1, expression. Further, Egr-1 activation of the LHbeta promoter is specifically enhanced by PKC, in agreement with a role for Egr-1 in mediating a GnRH effect on transcription. Egr-1 interacts directly with Ptx1 and with SF-1, leading to an enhancement of Ptx1- and SF-1-induced LHbeta transcription. Thus, Egr-1 is a likely transcriptional mediator of GnRH-induced signals for activation of the LHbeta gene.  (+info)

Pax6 and Cdx2/3 form a functional complex on the rat glucagon gene promoter G1-element. (15/1799)

Alpha-cell specific transcription of the glucagon gene is mainly conferred by the glucagon promoter G1-element, while additional elements G2, G3, and G4 have broad islet cell specificity. Transcription of the glucagon gene has been shown to be stimulated by Pax6 through binding to the glucagon gene promoter G3-element. In this report, we show that Pax6 additionally binds the glucagon gene promoter G1-element and forms a transcriptionally active complex with another homeodomain protein, Cdx2/3. Two distinct mutations in the G1-element, that both reduce promoter activity by 85-90%, is shown to eliminate binding of either Pax6 or Cdx2/3. Additionally, Pax6 enhanced Cdx2/3 mediated activation of a glucagon reporter in heterologous cells. We discuss how Pax6 may contribute to cell-type specific transcription in the pancreatic islets by complex formation with different transcription factors.  (+info)

Pax6 and Pdx1 form a functional complex on the rat somatostatin gene upstream enhancer. (16/1799)

The somatostatin upstream enhancer (SMS-UE) is a highly complex enhancer element. The distal A-element contains overlapping Pdx1 and Pbx binding sites. However, a point mutation in the A-element that abolishes both Pdxl and Pbx binding does not impair promoter activity. In contrast, a point mutation that selectively eliminates Pdx1 binding to a proximal B-element reduces the promoter activity. The B-element completely overlaps with a Pax6 binding site, the C-element. A point mutation in the C-element demonstrates that Pax6 binding is essential for promoter activity. Interestingly, a block mutation in the A-element reduces both Pax6 binding and promoter activity. In heterologous cells, Pdx1 potentiated Pax6 mediated activation of a somatostatin reporter. We conclude that the beta/delta-cell-specific activity of the SMS-UE is achieved through simultaneous binding of Pdx1 and Pax6 to the B- and C-elements, respectively. Furthermore, the A-element appears to stabilise Pax6 binding.  (+info)