Loading...
(1/5423) EB1, a protein which interacts with the APC tumour suppressor, is associated with the microtubule cytoskeleton throughout the cell cycle.

The characteristics of the adenomatous polyposis coli (APC) associated protein EB1 were examined in mammalian cells. By immunocytochemistry EB1 was shown to be closely associated with the microtubule cytoskeleton throughout the cell cycle. In interphase cells EB1 was associated with microtubules along their full length but was often particularly concentrated at their tips. During early mitosis, EB1 was localized to separating centrosomes and associated microtubules, while at metaphase it was associated with the spindle poles and associated microtubules. During cytokinesis EB1 was strongly associated with the midbody microtubules. Treatment with nocodazole caused a diffuse redistribution of EB1 immunoreactivity, whereas treatment with cytochalasin D had no effect. Interestingly, treatment with taxol abolished the EB1 association with microtubules. In nocodazole washout experiments EB1 rapidly became associated with the centrosome and repolymerizing microtubules. In taxol wash-out experiments EB1 rapidly re-associated with the microtubule cytoskeleton, resembling untreated control cells within 10 min. Immunostaining of SW480 cells, which contain truncated APC incapable of interaction with EB1, showed that the association of EB1 with microtubules throughout the cell cycle was not dependent upon an interaction with APC. These results suggest a role for EB1 in the control of microtubule dynamics in mammalian cells.  (+info)

(2/5423) Phase I study of escalating doses of edatrexate in combination with paclitaxel in patients with metastatic breast cancer.

Motivated by the observation of preclinical synergy, a Phase I dose escalation study of edatrexate in combination with a 3-h paclitaxel infusion was performed in patients with advanced breast cancer to determine the maximum tolerated dose (MTD) of edatrexate and the toxicities associated with this combination and to report preliminary observations of efficacy with this novel combination. Thirty-six patients were enrolled in this Phase I trial. Thirty-five eligible patients were treated every 21 days in cohorts of at least three patients and were assessable for toxicity. One patient was ineligible due to hyperbilirubinemia. Stepwise dose escalations of edatrexate were administered until grade >3 nonhematological dose-limiting toxicities were reported. The initial dose level of edatrexate was 180 mg/m2; subsequent cohorts were treated with escalating doses of edatrexate (210, 240, 270, 300, 350, and 400 mg/m2). Edatrexate was administered by i.v. infusion over 1 h. Paclitaxel was administered 24 h later at a fixed dose of 175 mg/m2 as a 3-h infusion with standard dexamethasone, diphenhydramine, and cimetidine premedication. The MTD of edatrexate was reached at the 350 mg/m2 level in this study. Grade 3 diarrhea was seen in one patient at the 300 and 400 mg/m2 dose levels, requiring dose reductions. Two patients experienced grade 4 stomatitis at the 400 mg/m2 dose level and also required dose reduction, establishing the MTD as 350 mg/m2. Grade 3 nausea and vomiting were noted in two of three patients at the highest dose level. Of 35 patients, 4 patients reported grade 3 myalgias and 1 patient reported grade 3 neurosensory complaints, which were seen mostly at the 350 and 400 mg/m2 dose levels; however, 1 patient reported grade 3 myalgias at 180 mg/m2. No cumulative neurotoxicity was observed, and no patient experienced an allergic reaction to paclitaxel. In 23 patients with bidimensionally measurable disease, there were four complete (17%) and seven partial responses, with an overall response rate of 48% (95% confidence interval, 27-69%). All of the responses were seen in patients who had not received prior chemotherapy for stage IV disease. The median duration of response was not assessable because many responding patients went on to receive high-dose chemotherapy treatment with stem cell support. The combination of edatrexate and paclitaxel for treatment of metastatic breast cancer is a feasible and safe regimen. The MTD of edatrexate was 350 mg/m2 when combined with a 3-h infusion of paclitaxel (175 mg/m2) given 24 h later. Activity was noted even among patients who had relapsed shortly after receiving methotrexate- and/or doxorubicin-containing adjuvant regimens. Additional studies evaluating the sequences and dosing schema for this combination are warranted to improve the response proportion and define the duration of the response.  (+info)

(3/5423) A phase I and pharmacokinetic study of losoxantrone and paclitaxel in patients with advanced solid tumors.

A Phase I and pharmacological study was performed to evaluate the feasibility, maximum tolerated dose (MTD), dose-limiting toxicities (DLTs), and pharmacokinetics of the anthrapyrazole losoxantrone in combination with paclitaxel in adult patients with advanced solid malignancies. Losoxantrone was administered as a 10-min infusion in combination with paclitaxel on either a 24- or 3-h schedule. The starting dose level was 40 mg/m2 losoxantrone and 135 mg/m2 paclitaxel (as a 24- or 3-h i.v. infusion) without granulocyte colony-stimulating factor (G-CSF). Administration of these agents at the starting dose level and dose escalation was feasible only with G-CSF support. The following dose levels (losoxantrone/paclitaxel, in mg/m2) of losoxantrone and paclitaxel as a 3-h infusion were also evaluated: 50/135, 50/175, 50/200, 50/225, and 60/225. The sequence-dependent toxicological and pharmacological effects of losoxantrone and paclitaxel on the 24- and 3-h schedules of paclitaxel were also assessed. The MTD was defined as the dose at which >50% of the patients experienced DLT during the first two courses of therapy. DLTs, mainly myelosuppression, occurring during the first course of therapy were noted in four of six and five of eight patients treated with 40 mg/m2 losoxantrone and 135 mg/m2 paclitaxel over 24 and 3 h, respectively, without G-CSF. DLTs during the first two courses of therapy were observed in one of six patients at the 50/175 (losoxantrone/paclitaxel) mg/m2 dose level, two of four patients at the 50/200 mg/m2 dose level, one of four patients at the 50/225 mg/m2 dose level, and two of five patients at the 60/225 mg/m2 dose level. The degree of thrombocytopenia was worse, albeit not statistically significant, when 24-h paclitaxel preceded losoxantrone, with a mean percentage decrement in platelet count during course 1 of 80.7%, compared to 43.8% with the reverse sequence (P = 0.19). Losoxantrone clearance was not significantly altered by the sequence or schedule of paclitaxel. Cardiac toxicity was observed; however, it was not related to total cumulative dose of losoxantrone. An unacceptably high rate of DLTs at the first dose level of 40 mg/m2 losoxantrone and 135 mg/m2 paclitaxel administered as either a 24- or 3-h i.v. infusion precluded dose escalation without G-CSF support. The addition of G-CSF to the regimen permitted further dose escalation without reaching the MTD. Losoxantrone at 50 mg/m2 followed by paclitaxel (3-h i.v. infusion) at 175 mg/m2 with G-CSF support is recommended for further clinical trials.  (+info)

(4/5423) Tyrosine kinase inhibitor emodin suppresses growth of HER-2/neu-overexpressing breast cancer cells in athymic mice and sensitizes these cells to the inhibitory effect of paclitaxel.

Overexpression of the HER-2/neu proto-oncogene, which encodes the tyrosine kinase receptor p185neu, has been observed in tumors from breast cancer patients. We demonstrated previously that emodin, a tyrosine kinase inhibitor, suppresses tyrosine kinase activity in HER-2/neu-overexpressing breast cancer cells and preferentially represses transformation phenotypes of these cells in vitro. In the present study, we examined whether emodin can inhibit the growth of HER-2/neu-overexpressing tumors in mice and whether emodin can sensitize these tumors to paclitaxel, a commonly used chemotherapeutic agent for breast cancer patients. We found that emodin significantly inhibited tumor growth and prolonged survival in mice bearing HER-2/neu-overexpressing human breast cancer cells. Furthermore, the combination of emodin and paclitaxel synergistically inhibited the anchorage-dependent and -independent growth of HER-2/neu-overexpressing breast cancer cells in vitro and synergistically inhibited tumor growth and prolonged survival in athymic mice bearing s.c. xenografts of human tumor cells expressing high levels of p185neu. Both immunohistochemical staining and Western blot analysis showed that emodin decreases tyrosine phosphorylation of HER-2/neu in tumor tissue. Taken together, our results suggest that the tyrosine kinase activity of HER-2/neu is required for tumor growth and chemoresistance and that tyrosine kinase inhibitors such as emodin can inhibit the growth of HER-2/neu-overexpressing tumors in mice and also sensitize these tumors to paclitaxel. The results may have important implications in chemotherapy for HER-2/neu-overexpressing breast tumors.  (+info)

(5/5423) Microtubule-dependent plus- and minus end-directed motilities are competing processes for nuclear targeting of adenovirus.

Adenovirus (Ad) enters target cells by receptor-mediated endocytosis, escapes to the cytosol, and then delivers its DNA genome into the nucleus. Here we analyzed the trafficking of fluorophore-tagged viruses in HeLa and TC7 cells by time-lapse microscopy. Our results show that native or taxol-stabilized microtubules (MTs) support alternating minus- and plus end-directed movements of cytosolic virus with elementary speeds up to 2.6 micrometer/s. No directed movement was observed in nocodazole-treated cells. Switching between plus- and minus end-directed elementary speeds at frequencies up to 1 Hz was observed in the periphery and near the MT organizing center (MTOC) after recovery from nocodazole treatment. MT-dependent motilities allowed virus accumulation near the MTOC at population speeds of 1-10 micrometer/min, depending on the cell type. Overexpression of p50/dynamitin, which is known to affect dynein-dependent minus end-directed vesicular transport, significantly reduced the extent and the frequency of minus end-directed migration of cytosolic virus, and increased the frequency, but not the extent of plus end-directed motility. The data imply that a single cytosolic Ad particle engages with two types of MT-dependent motor activities, the minus end- directed cytoplasmic dynein and an unknown plus end- directed activity.  (+info)

(6/5423) CLIP-170 highlights growing microtubule ends in vivo.

A chimera with the green fluorescent protein (GFP) has been constructed to visualize the dynamic properties of the endosome-microtubule linker protein CLIP170 (GFP-CLIP170). GFP-CLIP170 binds in stretches along a subset of microtubule ends. These fluorescent stretches appear to move with the growing tips of microtubules at 0.15-0.4 microm/s, comparable to microtubule elongation in vivo. Analysis of speckles along dynamic GFP-CLIP170 stretches suggests that CLIP170 treadmills on growing microtubule ends, rather than being continuously transported toward these ends. Drugs affecting microtubule dynamics rapidly inhibit movement of GFP-CLIP170 dashes. We propose that GFP-CLIP170 highlights growing microtubule ends by specifically recognizing the structure of a segment of newly polymerized tubulin.  (+info)

(7/5423) A novel taxane with improved tolerability and therapeutic activity in a panel of human tumor xenografts.

Clinically available taxanes represent one of the most promising class of antitumor agents, despite several problems with their solubility and toxicity. In an attempt to improve the pharmacological profile of taxanes, a new series of analogues was synthesized from 14beta-hydroxy-10-deacetylbaccatin III and tested in a panel of human tumor cell lines. On the basis of the pattern of cytotoxicity and lack of cross-resistance in tumor cell lines expressing the typical multidrug-resistant phenotype, a compound (IDN5109) was selected for preclinical development. A comparative efficacy study of IDN5109 and paclitaxel was performed using a large panel of human tumor xenografts, characterized by intrinsic (seven tumors) or acquired (four tumors) resistance to cisplatin or doxorubicin, including four ovarian, one breast, one cervical, three lung, one colon, and one prostatic carcinoma. Drugs were delivered i.v. according to the same schedule (four times every 4th day). IDN5109 achieved a very high level of activity (percentage tumor weight inhibition >70%; log10 cell kill >1) in all but one of the tested tumors. Compared to paclitaxel, IDN5109 exhibited a significantly superior activity in six tumors (including the four tumors that were resistant to paclitaxel) and a comparable activity against the other five paclitaxel-responsive tumors. Additional advantages of IDN5109 over paclitaxel were also suggested by its toxicity profile. IDN5109 was not only less toxic (maximal tolerated doses were 90 and 54 mg/kg for IDN5109 and paclitaxel, respectively), but it also appeared to be endowed with a reduced neurotoxic potential and an improved profile of tolerability compared to the parent drug. Furthermore, the best antitumor efficacy was often already reached with doses lower than the maximal tolerated dose, suggesting an improved therapeutic index for the new drug. In conclusion, the results support the preclinical interest of IDN5109 in terms of the toxicity profile and of the efficacy with particular reference to the ability to overcome multiple mechanisms of drug resistance.  (+info)

(8/5423) Phase I and pharmacologic study of the combination of paclitaxel, cisplatin, and topotecan administered intravenously every 21 days as first-line therapy in patients with advanced ovarian cancer.

PURPOSE: To evaluate the feasibility of administering topotecan in combination with paclitaxel and cisplatin without and with granulocyte colony-stimulating factor (G-CSF) support as first-line chemotherapy in women with incompletely resected stage III and stage IV ovarian carcinoma. PATIENTS AND METHODS: Starting doses were paclitaxel 110 mg/m2 administered over 24 hours (day 1), followed by cisplatin 50 mg/m2 over 3 hours (day 2) and topotecan 0.3 mg/m2/d over 30 minutes for 5 consecutive days (days 2 to 6). Treatment was repeated every 3 weeks. After encountering dose-limiting toxicities (DLTs) without G-CSF support, the maximum-tolerated dose was defined as 5 microg/kg of G-CSF subcutaneously starting on day 6. RESULTS: Twenty-one patients received a total of 116 courses at four different dose levels. The DLT was neutropenia. At the first dose level, all six patients experienced grade 4 myelosuppression. G-CSF support permitted further dose escalation of cisplatin and topotecan. Nonhematologic toxicities, primarily fatigue, nausea/vomiting, and neurosensory neuropathy, were observed but were generally mild. Of 15 patients assessable for response, nine had a complete response, four achieved a partial response, and two had stable disease. CONCLUSION: Neutropenia was the DLT of this combination of paclitaxel, cisplatin, and topotecan. The recommended phase II dose is paclitaxel 110 mg/m2 (day 1), followed by cisplatin 75 mg/m2 (day 2) and topotecan 0.3 mg/m2/d (days 2 to 6) with G-CSF support repeated every 3 weeks.  (+info)