A PAK-like protein kinase is required for maturation of young hyphae and septation in the filamentous ascomycete Ashbya gossypii. (73/1023)

Filamentous fungi grow by hyphal extension, which is an extreme example of polarized growth. In contrast to yeast species, where polarized growth of the tip of an emerging bud is temporally limited, filamentous fungi exhibit constitutive polarized growth of the hyphal tip. In many fungi, including Ashbya gossypii, polarized growth is reinforced by a process called hyphal maturation. Hyphal maturation refers to the developmental switch from slow-growing hyphae of young mycelium to fast-growing hyphae of mature mycelium. This process is essential for efficient expansion of mycelium. We report for the first time on the identification and characterization of a fungal gene important for hyphal maturation. This novel A. gossypii gene encodes a presumptive PAK (p21-activated kinase)-like kinase. Its closest homolog is the S. cerevisiae Cla4 protein kinase; the A. gossypii protein is therefore called AgCla4p. Agcla4 deletion strains are no longer able to perform the developmental switch from young to mature hyphae, and GFP (green fluorescent protein)-tagged AgCla4p localizes with much higher frequency in mature hyphal tips than in young hyphal tips. Both results support the importance of AgCla4p in hyphal maturation. AgCla4p is also required for septation, indicated by the inability of Agcla4 deletion strains to properly form actin rings and chitin rings. Despite the requirement of AgCla4p for the development of fast-growing hyphae, AgCla4p is not necessary for actin polarization per se, because tips enriched in cortical patches and hyphae with a fully developed network of actin cables can be seen in Agcla4 deletion strains. The possibility that AgCla4p may be involved in regulatory mechanisms that control the dynamics of the actin patches and/or actin cables is discussed.  (+info)

Inhibitory regulation of Rac activation, membrane ruffling, and cell migration by the G protein-coupled sphingosine-1-phosphate receptor EDG5 but not EDG1 or EDG3. (74/1023)

Sphingosine-1-phosphate (S1P) is a bioactive lysophospholipid that induces a variety of biological responses in diverse cell types. Many, if not all, of these responses are mediated by members of the EDG (endothelial differentiation gene) family G protein-coupled receptors EDG1, EDG3, and EDG5 (AGR16). Among prominent activities of S1P is the regulation of cell motility; S1P stimulates or inhibits cell motility depending on cell types. In the present study, we provide evidence for EDG subtype-specific, contrasting regulation of cell motility and cellular Rac activity. In CHO cells expressing EDG1 or EDG3 (EDG1 cells or EDG3 cells, respectively) S1P as well as insulin-like growth factor I (IGF I) induced chemotaxis and membrane ruffling in phosphoinositide (PI) 3-kinase- and Rac-dependent manners. Both S1P and IGF I induced a biphasic increase in the amount of the GTP-bound active form of Rac. In CHO cells expressing EDG5 (EDG5 cells), IGF I similarly stimulated cell migration; however, in contrast to what was found for EDG1 and EDG3 cells, S1P did not stimulate migration but totally abolished IGF I-directed chemotaxis and membrane ruffling, in a manner dependent on a concentration gradient of S1P. In EDG5 cells, S1P stimulated PI 3-kinase activity as it did in EDG1 cells but inhibited the basal Rac activity and totally abolished IGF I-induced Rac activation, which involved stimulation of Rac-GTPase-activating protein activity rather than inhibition of Rac-guanine nucleotide exchange activity. S1P induced comparable increases in the amounts of GTP-RhoA in EDG3 and EDG5 cells. Neither S1P nor IGF I increased the amount of GTP-bound Cdc42. However, expression of N(17)-Cdc42, but not N(19)-RhoA, suppressed S1P- and IGF I-directed chemotaxis, suggesting a requirement for basal Cdc42 activity for chemotaxis. Taken together, the present results demonstrate that EDG5 is the first example of a hitherto-unrecognized type of receptors that negatively regulate Rac activity, thereby inhibiting cell migration and membrane ruffling.  (+info)

Interaction of paxillin with p21-activated Kinase (PAK). Association of paxillin alpha with the kinase-inactive and the Cdc42-activated forms of PAK3. (75/1023)

p21-activated kinases (PAKs) are implicated in integrin signalings, and have been proposed to associate with paxillin indirectly. We show here that paxillin can bind directly to PAK3. We examined several representative focal adhesion proteins, and found that paxillin is the sole protein that associates with PAK3. PAK3 associated with the alpha and beta isoforms of paxillin, but not with gamma. We also show that paxillin alpha associated with both the kinase-inactive and the Cdc42-activated forms of PAK3 in vivo, without affecting the activation states of the kinase. A number of different functions have been ascribed to PAKs; and PAKs can bind directly to growth factor signaling-adaptor molecule, Nck, and a guanine nucleotide exchanger, betaPIX. Our results revealed that paxillin alpha can compete with Nck and betaPIX in the binding of PAK3. Moreover, paxillin alpha can be phosphorylated by PAK3 at serine. Therefore, paxillin alpha, but not gamma, appears to be capable of linking both the kinase-inactive and activated forms of PAK3 to integrins independent of Nck and betaPIX, as Nck links PAK1 to growth factor receptors. Our results also revealed that paxillin is involved in highly complexed protein-protein interactions in integrin signaling.  (+info)

Assembly of scaffold-mediated complexes containing Cdc42p, the exchange factor Cdc24p, and the effector Cla4p required for cell cycle-regulated phosphorylation of Cdc24p. (76/1023)

In budding yeast cells, the cytoskeletal polarization and depolarization events that shape the bud are triggered at specific times during the cell cycle by the cyclin-dependent kinase Cdc28p. Polarity establishment also requires the small GTPase Cdc42p and its exchange factor, Cdc24p, but the mechanism whereby Cdc28p induces Cdc42p-dependent polarization is unknown. Here we show that Cdc24p becomes phosphorylated in a cell cycle-dependent manner, triggered by Cdc28p. However, the role of Cdc28p is indirect, and the phosphorylation appears to be catalyzed by the p21-activated kinase family member Cla4p and also depends on Cdc42p and the scaffold protein Bem1p. Expression of GTP-Cdc42p, the product of Cdc24p-mediated GDP/GTP exchange, stimulated Cdc24p phosphorylation independent of cell cycle cues, raising the possibility that the phosphorylation is part of a feedback regulatory pathway. Bem1p binds directly to Cdc24p, to Cla4p, and to GTP-bound Cdc42p and can mediate complex formation between these proteins in vitro. We suggest that Bem1p acts to concentrate polarity establishment proteins at a discrete site, facilitating polarization and promoting Cdc24p phosphorylation at specific times during the cell cycle.  (+info)

Functional interaction between c-Abl and the p21-activated protein kinase gamma-PAK. (77/1023)

A member of the p21-activated protein kinase (PAK) family, gamma-PAK has cytostatic properties and is activated by cellular stresses such as hyperosmolarity or DNA damage. We report herein that gamma-PAK is associated in vivo with the nonreceptor protein tyrosine kinase c-Abl. gamma-PAK phosphorylates c-Abl on sites located in the kinase domain, in a region that is implicated in protein-protein interactions and in subcellular localization. Activation of gamma-PAK in human embryonic kidney 293T cells by cotransfection with constitutively active Cdc42 induces activation of c-Abl, resulting in increased phosphotyrosine levels. Cotransfection of c-Abl and gamma-PAK elicits phosphorylation of gamma-PAK on tyrosine and down-regulation of gamma-PAK activity, promoting accumulation of inactive gamma-PAK. gamma-PAK is also phosphorylated in vitro by c-Abl. gamma-PAK activity is regulated by ubiquitination and proteolysis in vivo, as shown by immunoblotting with an anti-ubiquitin antibody in the presence of proteasome inhibitors. In summary, we describe a functional interaction between gamma-PAK and c-Abl in which gamma-PAK stimulates c-Abl tyrosine kinase activity and c-Abl phosphorylates and down-regulates gamma-PAK, suggesting the existence of a negative feedback loop between c-Abl and gamma-PAK.  (+info)

The interaction between Cdc42 and WASP is required for SDF-1-induced T-lymphocyte chemotaxis. (78/1023)

In studies aimed at further characterizing the cellular immunodeficiency of the Wiskott-Aldrich syndrome (WAS), we found that T lymphocytes from WAS patients display abnormal chemotaxis in response to the T-cell chemoattractant stromal cell-derived factor (SDF)-1. The Wiskott- Aldrich syndrome protein (WASP), together with the Rho family GTPase Cdc42, control stimulus-induced actin cytoskeleton rearrangements that are involved in cell motility. Because WASP is an effector of Cdc42, we further studied how Cdc42 and WASP are involved in SDF-1-induced chemotaxis of T lymphocytes. We provide here direct evidence that SDF-1 activates Cdc42. We then specifically investigated the role of the interaction between Cdc42 and WASP in SDF-1-responsive cells. This was achieved by abrogating this interaction with a recombinant polypeptide (TAT-CRIB), comprising the Cdc42/Rac interactive binding (CRIB) domain of WASP and a human immunodeficiency virus-TAT peptide that renders the fusion protein cell-permeant. This TAT-CRIB protein was shown to bind specifically to Cdc42-GTP and to inhibit the chemotactic response of a T-cell line to SDF-1. Altogether, these data demonstrate that Cdc42-WASP interaction is critical for SDF-1-induced chemotaxis of T cells.  (+info)

Temporal and spatial distribution of activated Pak1 in fibroblasts. (79/1023)

p21-activated kinases (Paks) are effectors of the small GTPases Cdc42 and Rac, and are thought to mediate some of the cytoskeletal and transcriptional activities of these proteins. To localize activated Pak1 in cells, we developed an antibody directed against a phosphopeptide that is contained within the activation loop of Pak1. This antibody specifically recognizes the activated form of Pak1. Immunofluorescence analysis of NIH-3T3 cells coexpressing activated Cdc42 or Rac1 plus wild-type Pak1 shows that activated Pak1 accumulates at sites of focal adhesion, throughout filopodia and within the body and edges of lamellipodia. Platelet-derived growth factor stimulation of NIH-3T3 cells shows a pattern of Pak1 activation similar to that observed with Rac1. During closure of a fibroblast monolayer wound, Pak1 is rapidly activated and localizes to the leading edge of motile cells, then gradually tapers off as the wound closes. The activation of Pak1 by wounding is blocked by inhibitors of phosphatidylinositol 3-kinase, and Src family kinases, but not by an inhibitor of the epidermal growth factor receptor. These findings indicate that activated Pak1, and by extension, probably activated Cdc42 or Rac, accumulates at sites of cortical actin remodeling in motile fibroblasts.  (+info)

Design and use of an inducibly activated human immunodeficiency virus type 1 Nef to study immune modulation. (80/1023)

The Nef protein of the human immunodeficiency virus type 1 (HIV-1) has been shown to enhance the infectivity of virus particles, downmodulate cell surface proteins, and associate with many intracellular proteins that are thought to facilitate HIV infection. One of the challenges in defining the molecular events regulated by Nef has been obtaining good expression of Nef protein in T cells. This has been attributed to effects of Nef on cell proliferation and apoptosis. We have designed a Nef protein that is readily expressed in T-cell lines and whose function is inducibly activated. It is composed of a fusion between full-length Nef and the estrogen receptor hormone-binding domain (Nef-ER). The Nef-ER is kept in an inactive state due to steric hindrance, and addition of the membrane-permeable drug 4-hydroxytamoxifen (4-HT), which binds to the ER domain, leads to inducible activation of Nef-ER within cells. We demonstrate that Nef-ER inducibly associates with the 62-kDa Ser/Thr kinase and is localized to specific membrane microdomains (lipid rafts) only after activation. Using this inducible Nef, we also compared the specific requirements for CD4 and HLA-A2 downmodulation in a SupT1 T-cell line. Half-maximal downmodulation of cell surface CD4 required very little active Nef-ER and occurred as early as 4 h after addition of 4-HT. In contrast, 50% downmodulation of HLA-A2 by Nef required 16 to 24 h and about 50- to 100-fold-greater concentrations of 4-HT. These data suggest that HLA-A2 downmodulation may require certain threshold levels of active Nef. The differential timing of CD4 and HLA-A2 downmodulation may have implications for HIV pathogenesis and immune evasion.  (+info)