Differential effect of jasmonic acid and abscisic acid on cell cycle progression in tobacco BY-2 cells. (73/1093)

Environmental stress affects plant growth and development. Several plant hormones, such as salicylic acid, abscisic acid (ABA), jasmonic acid (JA), and ethylene play a crucial role in altering plant morphology in response to stress. Developmental regulation often has the cell cycle machinery among its targets. We analyzed the effect of JA and ABA on cell cycle progression in synchronized tobacco (Nicotiana tabacum) BY-2 cells. Both compounds were found to prevent DNA replication, keeping the cells in the G1 stage, when applied just before the G1/S transition. However, ABA did not have any effect on subsequent phases of the cell cycle when applied at a later stage, whereas JA effectively prevented mitosis on application during DNA synthesis. This demonstrates that JA treatment can freeze synchronized BY-2 cells in both the G1 and G2 stages of the cell cycle. Jasmonate administered after the S-phase was less effective in decreasing the mitotic index, suggesting that cell sensitivity toward JA is dependent on the cell cycle phase. In cultures detained in the G2-phase, we observed a reduced histone H1 kinase activity of kinases associated with the p13(suc1) protein.  (+info)

Methyl jasmonate-induced stimulation of sarcoplasmic reticulum Ca(2+)-ATPase affects contractile responses in rat slow-twitch skeletal muscle. (74/1093)

The purpose of this study was to determine whether methyl jasmonate, a stimulator of Ca(2+)-adenosine triphosphatase (ATPase) activity of the purified ATPase from fast-twitch skeletal muscle, could affect contractile responses in small bundles of rat isolated slow-twitch (soleus) fibers. In saponin-skinned fibers, sarcoplasmic reticulum (SR) Ca(2+) loading was performed in pCa 7.0 solution. The amount of Ca(2+) taken up was monitored by use of the amplitude of contraction following application of 10 mM caffeine. Results indicate that the increased loading rate in the presence of methyl jasmonate is likely due to stimulation of the SR Ca(2+)-ATPase. In Triton-skinned fibers, the myofibrillar Ca(2+) sensitivity was not changed by methyl jasmonate (50-200 microM). In intact fibers, the amplitude and the time constant of relaxation of twitch and potassium contracture were reversibly reduced after 2 min of application of methyl jasmonate at a concentration of up to 125 microM. At higher concentrations (>150 microM), effects were not reversible. In the presence of methyl jasmonate (100 microM), the relationship between the amplitude of potassium contractures and the membrane potential shifted to more positive potentials, whereas the steady-state inactivation curve was unchanged. These observations suggest that methyl jasmonate has no effect on voltage sensors. Taken together, our results show that methyl jasmonate is a potent, reversible, and specific stimulator of the SR Ca(2+) pump in slow-twitch skeletal muscle and is an extremely valuable pharmacological tool for improving relaxation and studying calcium-signaling questions.  (+info)

Long-distance CO(2) signalling in plants. (75/1093)

Stomatal numbers are tightly controlled by environmental signals including light intensity and atmospheric CO(2) partial pressure. This requires control of epidermal cell development during the early phase of leaf growth and involves changes in both the density of cells on the leaf surface and the proportion of cells that adopt a stomatal fate. This paper reviews the current understanding of how stomata develop and describes recent advances that have given insights into the regulatory mechanisms involved using mutant Arabidopsis plants that implicates a role for long-chain fatty acids in cell-to-cell communication. Evidence is presented which indicates that long-distance signalling from mature to newly developing leaves forms part of the mechanism by which stomatal development responds to environmental cues. Analysis of mutant plants suggests that the plant hormones abscisic acid, ethylene and jasmonates are implicated in the long-distance signalling pathway and that the action may be mediated by reactive oxygen species.  (+info)

Nitrogen storage and remobilization in Brassica napus L. during the growth cycle: identification, characterization and immunolocalization of a putative taproot storage glycoprotein. (76/1093)

In taproot of oilseed rape (Brassica napus L.), a 23 kDa polypeptide has been recently identified as a putative vegetative storage protein (VSP) because of its accumulation during flowering and its specific mobilization to sustain grain filling when N uptake is strongly reduced. The objectives were to characterize this protein more precisely and to study the effect of environmental factors (N availability, daylength, temperature, water deficit, wounding) or endogenous signals (methyl jasmonate, abscisic acid) that might change the N source/sink relationships within the plant, and may therefore trigger its accumulation. The 23 kDa putative VSP has two isoforms, is glycosylated and both isoforms share the same N-terminal sequence which had been used to produce specific polyclonal antibodies. Low levels of an immunoreactive protein of 24 kDa were found in leaves and flowers. In taproot, the 23 kDa putative VSP seems to accumulate only in the vacuoles of peripheral cortical parenchyma cells, around the phloem vessels. Among all treatments tested, the accumulation of this protein could only be induced by abscisic acid and methyl jasmonate. When compared to control plants, application of methyl jasmonate reduced N uptake by 89% after 15 d, induced a strong remobilization of N from senescing leaves and a concomitant accumulation of the 23 kDa putative VSP. These results suggested that, in rape, the 23 kDa protein is used as a storage buffer between N losses from senescing leaves promoted by methyl jasmonate and grain filling.  (+info)

Abscisic acid determines basal susceptibility of tomato to Botrytis cinerea and suppresses salicylic acid-dependent signaling mechanisms. (77/1093)

Abscisic acid (ABA) is one of the plant hormones involved in the interaction between plants and pathogens. In this work, we show that tomato (Lycopersicon esculentum Mill. cv Moneymaker) mutants with reduced ABA levels (sitiens plants) are much more resistant to the necrotrophic fungus Botrytis cinerea than wild-type (WT) plants. Exogenous application of ABA restored susceptibility to B. cinerea in sitiens plants and increased susceptibility in WT plants. These results indicate that ABA plays a major role in the susceptibility of tomato to B. cinerea. ABA appeared to interact with a functional plant defense response against B. cinerea. Experiments with transgenic NahG tomato plants and benzo(1,2,3)thiadiazole-7-carbothioic acid demonstrated the importance of salicylic acid in the tomato-B. cinerea interaction. In addition, upon infection with B. cinerea, sitiens plants showed a clear increase in phenylalanine ammonia lyase activity, which was not observed in infected WT plants, indicating that the ABA levels in healthy WT tomato plants partly repress phenylalanine ammonia lyase activity. In addition, sitiens plants became more sensitive to benzo(1,2,3)thiadiazole-7-carbothioic acid root treatment. The threshold values for PR1a gene expression declined with a factor 10 to 100 in sitiens compared with WT plants. Thus, ABA appears to negatively modulate the salicylic acid-dependent defense pathway in tomato, which may be one of the mechanisms by which ABA levels determine susceptibility to B. cinerea.  (+info)

Differential effectiveness of salicylate-dependent and jasmonate/ethylene-dependent induced resistance in Arabidopsis. (78/1093)

Salicylic acid (SA), jasmonic acid (JA), and ethylene (ET) are each involved in the regulation of basal resistance against different pathogens. These three signals play important roles in induced resistance as well. SA is a key regulator of pathogen-induced systemic acquired resistance (SAR), whereas JA and ET are required for rhizobacteria-mediated induced systemic resistance (ISR). Both types of induced resistance are effective against a broad spectrum of pathogens. In this study, we compared the spectrum of effectiveness of SAR and ISR using an oomycete, a fungal, a bacterial, and a viral pathogen. In noninduced Arabidopsis plants, these pathogens are primarily resisted through either SA-dependent basal resistance (Peronospora parasitica and Turnip crinkle virus [TCV]), JA/ET-dependent basal resistance responses (Alternaria brassicicola), or a combination of SA-, JA-, and ET-dependent defenses (Xanthomonas campestris pv. armoraciae). Activation of ISR resulted in a significant level of protection against A. brassicicola, whereas SAR was ineffective against this pathogen. Conversely, activation of SAR resulted in a high level of protection against P. parasitica and TCV, whereas ISR conferred only weak and no protection against P. parasitica and TCV, respectively. Induction of SAR and ISR was equally effective against X. campestris pv. armoraciae. These results indicate that SAR is effective against pathogens that in noninduced plants are resisted through SA-dependent defenses, whereas ISR is effective against pathogens that in noninduced plants are resisted through JA/ET-dependent defenses. This suggests that SAR and ISR constitute a reinforcement of extant SA- or JA/ET-dependent basal defense responses, respectively.  (+info)

Methyl jasmonate alters polyamine metabolism and induces systemic protection against powdery mildew infection in barley seedlings. (79/1093)

Treatment of the first leaves of barley (Hordeum vulgare L. cv. Golden Promise) seedlings with methyl jasmonate (MJ) led to small, but significant increases in levels of free putrescine and spermine 1 d later and to significant increases in levels of free putrescine, spermidine and spermine by 4 d following treatment. MJ-treated first leaves also exhibited significant increases in the amounts of soluble conjugates of putrescine and spermidine 1, 2 and 4 d after treatment. In second leaves of plants where the first leaves had been treated with MJ, no significant changes in levels of free polyamines were observed, but significant increases in levels of soluble conjugates of putrescine and spermidine were detected. These changes were accompanied by increased activities of soluble ornithine decarboxylase (ODC), soluble and particulate arginine decarboxylase (ADC), and S-adenosylmethionine decarboxylase (AdoMetDC), in first and second leaves following treatment of the first leaves with MJ. Activities of soluble and particulate diamine oxidase (DAO) were also higher in first and second leaves following treatment of the first leaves with MJ. Treatment of the first leaves with MJ led to a significant reduction in powdery mildew (Blumeria graminis f. sp. hordei) infection on the second leaves and also resulted in significant increases in activities of the plant defence-related enzymes, phenylalanine ammonia lyase (PAL) and peroxidase.  (+info)

Copper amine oxidase expression in defense responses to wounding and Ascochyta rabiei invasion. (80/1093)

Wounding chickpea (Cicer arietinum) internodes or cotyledons resulted in an increase in the steady-state level of copper amine oxidase (CuAO) expression both locally and systemically. Dissection of the molecular mechanisms controlling CuAO expression indicated that jasmonic acid worked as a potent inducer of the basal and wound-inducible CuAO expression, whereas salicylic acid and abscisic acid caused a strong reduction of the wound-induced CuAO expression, without having any effect on the basal levels. Epicotyl treatment with the CuAO mechanism-based inhibitor 2-bromoethylamine decreased hydrogen peroxide (H(2)O(2)) levels in all the internodes, as evidenced in vivo by 3,3'-diaminobenzidine oxidation. Moreover, inhibitor pretreatment of wounded epicotyls resulted in a lower accumulation of H(2)O(2) both at the wound site and in distal organs. In vivo CuAO inhibition by 2-bromoethylamine after inoculation of resistant chickpea cv Sultano with Ascochyta rabiei resulted in the development of extended necrotic lesions, with extensive cell damage occurring in sclerenchyma and cortical parenchyma tissues. These results, besides stressing the fine-tuning by key signaling molecules in wound-induced CuAO regulation, demonstrate that local and systemic CuAO induction is essential for H(2)O(2) production in response to wounding and indicate the relevance of these enzymes in protection against pathogens.  (+info)