Metal complexes as allosteric effectors of human hemoglobin: an NMR study of the interaction of the gadolinium(III) bis(m-boroxyphenylamide)diethylenetriaminepentaacetic acid complex with human oxygenated and deoxygenated hemoglobin. (9/1078)

The boronic functionalities on the outer surface of the Gd(III) bis(m-boroxyphenylamide)DTPA complex (Gd(III)L) enable it to bind to fructosamine residues of oxygenated glycated human adult hemoglobin. The formation of the macromolecular adduct can be assessed by NMR spectroscopy via observation of the enhancement of the solvent water proton relaxation rate. Unexpectedly, a strong binding interaction was also observed for the oxygenated unglycated human adult hemoglobin, eventually displaying a much higher relaxation enhancement. From relaxation rate measurements it was found that two Gd(III)L complexes interact with one hemoglobin tetramer (KD = 1.0 x 10(-5) M and 4.6 x 10(-4) M, respectively), whereas no interaction has been observed with monomeric hemoproteins. A markedly higher affinity of the Gd(III)L complex has been observed for oxygenated and aquo-met human adult hemoglobin derivatives with respect to the corresponding deoxy derivative. Upon binding, a net change in the quaternary structure of hemoglobin has been assessed by monitoring the changes in the high-resolution 1H-NMR spectrum of the protein as well as in the Soret absorption band. On the basis of these observations and the 11B NMR results obtained with the diamagnetic La(III)L complex, we suggest that the interaction between the lanthanide complex and deoxygenated, oxygenated, and aquo-met derivatives of human adult hemoglobin takes place at the 2, 3-diphosphoglycerate (DPG) binding site, through the formation of N-->B coordinative bonds at His143beta and His2beta residues of different beta-chains. The stronger binding to the oxygenated form is then responsible for a shift of the allosteric equilibrium toward the high-affinity R-state. Accordingly, Gd(III)L affinity for oxygenated human fetal hemoglobin (lacking His143beta) is significantly lower than that observed for the unglycated human adult tetramer.  (+info)

Non-enzymatic nitric oxide synthesis in biological systems. (10/1078)

Nitric oxide (NO) is an important regulator of a variety of biological functions, and also has a role in the pathogenesis of cellular injury. It had been generally accepted that NO is solely generated in biological tissues by specific nitric oxide synthases (NOS) which metabolize arginine to citrulline with the formation of NO. However, NO can also be generated in tissues by either direct disproportionation or reduction of nitrite to NO under the acidic and highly reduced conditions which occur in disease states, such as ischemia. This NO formation is not blocked by NOS inhibitors and with long periods of ischemia progressing to necrosis, this mechanism of NO formation predominates. In postischemic tissues, NOS-independent NO generation has been observed to result in cellular injury with a loss of organ function. The kinetics and magnitude of nitrite disproportionation have been recently characterized and the corresponding rate law of NO formation derived. It was observed that the generation and accumulation of NO from typical nitrite concentrations found in biological tissues increases 100-fold when the pH falls from 7.4 to 5.5. It was also observed that ischemic cardiac tissue contains reducing equivalents which reduce nitrite to NO, further increasing the rate of NO formation more than 40-fold. Under these conditions, the magnitude of enzyme-independent NO generation exceeds that which can be generated by tissue concentrations of NOS. The existence of this enzyme-independent mechanism of NO formation has important implications in our understanding of the pathogenesis and treatment of tissue injury.  (+info)

Parallel pathways mediate inhibitory effects of vasoactive intestinal polypeptide and nitric oxide in canine fundus. (11/1078)

1. The gastric adaptation reflex is activated by the release of non-adrenergic, non-cholinergic (NANC) inhibitory transmitters, including nitric oxide (NO) and vasoactive intestinal polypeptide (VIP). The role of NO in this reflex is not disputed, but some investigators suggest that NO synthesis is stimulated by VIP in post-junctional cells or in nerve terminals. We investigated whether the effects of these transmitters are mediated by independent pathways in the canine gastric fundus. 2. VIP and NO produced concentration-dependent relaxation of the canine fundus. Nomega-nitro-L-arginine (L-NNA) reduced relaxation induced by electrical field stimulation (EFS; 0.5-8 Hz), but had no effect on responses to exogenous VIP and sodium nitroprusside (SNP, 10 microM). 3. Oxyhaemoglobin reduced relaxations produced by EFS and SNP. Oxyhaemoglobin also reduced relaxation responses to low concentrations of VIP (<10 nM), but these effects were non-specific and mimicked by methaemoglobin which had no effect on nitrergic responses. 4. A blocker of guanylyl cyclase, 1H-[1,2,4]oxidiazolo [4,3,-a]quinoxalin-1-one, (ODQ) inhibited responses to EFS, SNP and DETA/NONOate (an NO.donor), but had no effect on responses to VIP. cis-N-(2-phenylcyclopentil)-azacyclotridec-1en-2-amine monohydrochloride (MDL 12,330A), a blocker of adenylyl cyclase, reduced responses to EFS, VIP and forskolin, but did not affect responses to SNP. 5. Levels of cyclic GMP were enhanced by the NO donor S-nitroso-n-acetylpenicillamine (SNAP) but were unaffected by VIP (1 microM). The increase in cyclic GMP in response to SNAP was blocked by ODQ. 6. The results suggest that at least two transmitters, possibly NO and VIP, mediate relaxation responses in the canine fundus. NO and VIP mediate responses via cyclic GMP- and cyclic AMP-dependent mechanisms, respectively. No evidence was found for a serial cascade in which VIP is coupled to NO-dependent responses.  (+info)

Dynamics of tissue oxygenation in isolated rabbit heart as measured with near-infrared spectroscopy. (12/1078)

We investigated the role of myoglobin (Mb) in supplying O2 to mitochondria during transitions in cardiac workload. Isovolumic rabbit hearts (n = 7) were perfused retrogradely with hemoglobin-free Tyrode solution at 37 degrees C. Coronary venous O2 tension was measured polarographically, and tissue oxygenation was measured with two-wavelength near-infrared spectroscopy (NIRS), both at a time resolution of approximately 2 s. During transitions to anoxia, 68 +/- 2% (SE) of the NIRS signal was due to Mb and the rest to cytochrome oxidase. For heart rate steps from 120 to 190 or 220 beats/min, the NIRS signal decreased significantly by 6.9 +/- 1.3 or 11.1 +/- 2.1% of the full scale, respectively, with response times of 11.0 +/- 0.8 or 9.1 +/- 0.5 s, respectively. The response time of end-capillary O2 concentration ([O2]), estimated from the venous [O2], was 8.6 +/- 0.8 s for 190 beats/min (P < 0.05 vs. NIRS time) or 8.5 +/- 0.9 s for 220 beats/min (P > 0.05). The mean response times of mitochondrial O2 consumption (VO2) were 3.7 +/- 0.7 and 3.6 +/- 0.6 s, respectively. The deoxygenation of oxymyoglobin (MbO2) accounted for only 12-13% of the total decrease in tissue O2, with the rest being physically dissolved O2. During 11% reductions in perfusion flow at 220 beats/min, Mb was 1.5 +/- 0.4% deoxygenated (P < 0.05), despite the high venous PO2 of 377 +/- 17 mmHg, indicating metabolism-perfusion mismatch. We conclude that the contribution of MbO2 to the increase of VO2 during heart rate steps in saline-perfused hearts was small and slow compared with that of physically dissolved O2.  (+info)

Adenosine mediates relaxation of human small resistance-like coronary arteries via A2B receptors. (13/1078)

1. The receptor subtype and mechanisms underlying relaxation to adenosine were examined in human isolated small coronary arteries contracted with the thromboxane A2 mimetic, 1,5,5-hydroxy-11alpha, 9alpha-(epoxymethano)prosta-5Z, 13E-dienoic acid (U46619) to approximately 50% of their maximum contraction to K+ (125 mM) depolarization (Fmax). Relaxations were normalized as percentages of the 50% Fmax contraction. 2. Adenosine caused concentration-dependent relaxations (pEC50, 5.95+/-0.20; maximum relaxation (Rmax), 96.7+/-1.4%) that were unaffected by either combined treatment with the nitric oxide inhibitors, NG-nitro-L-arginine (L-NOARG; 100 microM) and oxyhaemoglobin (HbO; 20 microM) or the ATP-dependent K+ channel (KATP) inhibitor, glibenclamide (10 microM). The pEC50 but not Rmax to adenosine was significantly reduced by high extracellular K+ (30 mM). Relaxations to the adenylate cyclase activator, forskolin, however, were unaffected by high K+ (30 mM). 3. Adenosine and a range of adenosine analogues, adenosine, 2-chloroadenosine (2-CADO), 5'-N-ethyl-carboxamidoadenosine (NECA), R(-)-N6-(2-phenylisopropyl)-adenosine (R-PIA), S(+)-N6-(2-phenylisopropyl)-adenosine (S-PIA), N6-cyclopentyladenosine (CPA), 1-deoxy-1-[6-[[(3-iodophenyl)methyl]amino]-9H-purin-9-yl]-N-methyl-beta- D-ribofuranuronamide (IB-MECA), 2-p-(2-carboxyethyl)phenethylamino-5'-N-ethylcarboxamido adenosine hydrochloride (CGS 21680), relaxed arteries with a rank order of potency of NECA= 2-CADO >adenosine= IB-MECA = R-PIA= CPA > S-PIA)> CGS 21680. 4. Sensitivity but not Rmax to adenosine was significantly reduced approximately 80 and 20 fold by the non-selective adenosine receptor antagonist, 8-(p-sulphophenyl)theophylline (8-SPT) and the A2 receptor antagonist, 3,7-dimethyl-1-propargylxanthine (DMPX). By contrast, the A1-selective antagonist, 1,3-dipropyl-8-cyclopentylxanthine (DPCPX) had no effect on pEC50 or Rmax to adenosine. 5. These results suggest that A2B receptors mediate relaxation to adenosine in human small coronary arteries which is independent of NO but dependent in part on a K+-sensitive mechanism.  (+info)

Heme oxygenase-1 gene induction as an intrinsic regulation against delayed cerebral vasospasm in rats. (14/1078)

Delayed cerebral vasospasm after aneurysmal subarachnoid hemorrhage (SAH) causes cerebral ischemia and infarction. To date, the pathogenesis and gene expression associated with vasospasm remain poorly understood. The present study used fluorescent differential display to identify differentially expressed genes in a rat model of SAH. By using quantitative RT-PCR, we found that heme oxygenase-1 (HO-1) mRNA was prominently induced in the basilar artery and modestly in brain tissue in a rat vasospasm model. A significant correlation was observed between the degree of vasospasm and HO-1 mRNA levels in the basilar arteries exhibiting vasospasm. Intracisternal injection of antisense HO-1 oligodeoxynucleotide (ODN) significantly delayed the clearance of oxyhemoglobin and deoxyhemoglobin from the subarachnoid space and aggravated angiographic vasospasm. Antisense HO-1 ODN inhibited HO-1 induction in the basilar arteries but not in the whole brain tissue. This phenomenon was not observed in the nontreated, sense HO-1 ODN-treated, or scrambled ODN-treated arteries. We report the protective effects of HO-1 gene induction in cerebral vasospasm after SAH, a finding that should provide a novel therapeutic approach for cerebral vasospasm.  (+info)

Cellular PO2 as a determinant of maximal mitochondrial O(2) consumption in trained human skeletal muscle. (15/1078)

Previously, by measuring myoglobin-associated PO(2) (P(Mb)O(2)) during maximal exercise, we have demonstrated that 1) intracellular PO(2) is 10-fold less than calculated mean capillary PO(2) and 2) intracellular PO(2) and maximum O(2) uptake (VO(2 max)) fall proportionately in hypoxia. To further elucidate this relationship, five trained subjects performed maximum knee-extensor exercise under conditions of normoxia (21% O(2)), hypoxia (12% O(2)), and hyperoxia (100% O(2)) in balanced order. Quadriceps O(2) uptake (VO(2)) was calculated from arterial and venous blood O(2) concentrations and thermodilution blood flow measurements. Magnetic resonance spectroscopy was used to determine myoglobin desaturation, and an O(2) half-saturation pressure of 3.2 Torr was used to calculate P(Mb)O(2) from saturation. Skeletal muscle VO(2 max) at 12, 21, and 100% O(2) was 0.86 +/- 0.1, 1.08 +/- 0.2, and 1.28 +/- 0.2 ml. min(-1). ml(-1), respectively. The 100% O(2) values approached twice that previously reported in human skeletal muscle. P(Mb)O(2) values were 2.3 +/- 0.5, 3.0 +/- 0.7, and 4.1 +/- 0.7 Torr while the subjects breathed 12, 21, and 100% O(2), respectively. From 12 to 21% O(2), VO(2) and P(Mb)O(2) were again proportionately related. However, 100% O(2) increased VO(2 max) relatively less than P(Mb)O(2), suggesting an approach to maximal mitochondrial capacity with 100% O(2). These data 1) again demonstrate very low cytoplasmic PO(2) at VO(2 max), 2) are consistent with supply limitation of VO(2 max) of trained skeletal muscle, even in hyperoxia, and 3) reveal a disproportionate increase in intracellular PO(2) in hyperoxia, which may be interpreted as evidence that, in trained skeletal muscle, very high mitochondrial metabolic limits to muscle VO(2) are being approached.  (+info)

Blood lactate accumulation and muscle deoxygenation during incremental exercise. (16/1078)

Near-infrared spectroscopy (NIRS) could allow insights into controversial issues related to blood lactate concentration ([La](b)) increases at submaximal workloads (). We combined, on five well-trained subjects [mountain climbers; peak O(2) consumption (VO(2peak)), 51.0 +/- 4.2 (SD) ml. kg(-1). min(-1)] performing incremental exercise on a cycle ergometer (30 W added every 4 min up to voluntary exhaustion), measurements of pulmonary gas exchange and earlobe [La](b) with determinations of concentration changes of oxygenated Hb (Delta[O(2)Hb]) and deoxygenated Hb (Delta[HHb]) in the vastus lateralis muscle, by continuous-wave NIRS. A "point of inflection" of [La](b) vs. was arbitrarily identified at the lowest [La](b) value which was >0.5 mM lower than that obtained at the following. Total Hb volume (Delta[O(2)Hb + HHb]) in the muscle region of interest increased as a function of up to 60-65% of VO(2 peak), after which it remained unchanged. The oxygenation index (Delta[O(2)Hb - HHb]) showed an accelerated decrease from 60- 65% of VO(2 peak). In the presence of a constant total Hb volume, the observed Delta[O(2)Hb - HHb] decrease indicates muscle deoxygenation (i.e., mainly capillary-venular Hb desaturation). The onset of muscle deoxygenation was significantly correlated (r(2) = 0.95; P < 0.01) with the point of inflection of [La](b) vs., i.e., with the onset of blood lactate accumulation. Previous studies showed relatively constant femoral venous PO(2) levels at higher than approximately 60% of maximal O(2) consumption. Thus muscle deoxygenation observed in the present study from 60-65% of VO(2 peak) could be attributed to capillary-venular Hb desaturation in the presence of relatively constant capillary-venular PO(2) levels, as a consequence of a rightward shift of the O(2)Hb dissociation curve determined by the onset of lactic acidosis.  (+info)