Activation of metallothionein gene expression by hypoxia involves metal response elements and metal transcription factor-1. (65/22785)

Metallothioneins (MTs) are a family of stress-induced proteins with diverse physiological functions, including protection against metal toxicity and oxidants. They may also contribute to the regulation of cellular proliferation, apoptosis, and malignant progression. We reported previously that the human (h)MT-IIA isoform is induced in carcinoma cells (A431, SiHa, and HT29) exposed to low oxygen, conditions commonly found in solid tumors. The present study demonstrates that the genes for hMT-IIA and mouse (m)MT-I are transcriptionally activated by hypoxia through metal response elements (MREs) in their proximal promoter regions. These elements bind metal transcription factor-1 (MTF-1). Deletion and mutational analyses of the hMT-IIA promoter indicated that the hMRE-a element is essential for basal promoter activity and for induction by hypoxia, but that other elements contribute to the full transcriptional response. Functional studies of the mMT-I promoter demonstrated that at least two other MREs (mMRE-d and mMRE-c) are responsive to hypoxia. Multiple copies of either hMRE-a or mMRE-d conferred hypoxia responsiveness to a minimal MT promoter. Mouse MT-I gene transcripts in fibroblasts with targeted deletions of both MTF-1 alleles (MTF-1(-/-); dko7 cells) were not induced by zinc and showed low responsiveness to hypoxia. A transiently transfected MT promoter was unresponsive to hypoxia or zinc in dko7 cells, but inductions were restored by cotransfecting a mouse MTF-1 expression vector. Electrophoretic mobility shift assays detected a specific protein-DNA complex containing MTF-1 in nuclear extracts from hypoxic cells. Together, these results demonstrate that hypoxia activates MT gene expression through MREs and that this activation involves MTF-1.  (+info)

Electrocardiographic signs of chronic cor pulmonale: A negative prognostic finding in chronic obstructive pulmonary disease. (66/22785)

BACKGROUND: Chronic cor pulmonale (CCP) is a strong predictor of death in chronic obstructive pulmonary disease (COPD). The aims of this study were to assess the prognostic role of individual ECG signs of CCP and of the interaction between these signs and abnormal arterial blood gases. METHODS AND RESULTS: Two hundred sixty-three patients (217 men) with COPD, mean age 67+/-9 years, were grouped according to whether they had no ECG signs (group 1, n=100) or >/=1 ECG signs (group 2, n=163) of CCP and were followed up for 13 years after an exacerbation of respiratory failure. The median survival was significantly shorter in group 2 than in group 1 (2.58 versus 3. 45 years, respectively; Mantel-Cox test, 9.58; P=0.002). The Cox regression analysis identified S1S2S3 pattern, right atrial overload (RAO), and alveolar-arterial oxygen gradient (PAO2-PaO2) >48 mm Hg during oxygen therapy as the strongest predictors of death, with hazard rate (HR)=1.81 (95% CI, 1.22 to 2.69), HR=1.58 (95% CI, 1.15 to 2.18), and HR=1.96 (95% CI, 1.19 to 3.25), respectively. The median survivals of patients having both S1S2S3 pattern and RAO (n=14) and of patients having either S1S2S3 pattern or RAO (n=77) were 1.33 and 2.70 years, respectively (P=0.022). Group 2 patients had a 3-year survival of 18% or 53%, depending on whether their PAO2-PaO2 during oxygen therapy was or was not >48 mm Hg. CONCLUSIONS: Some ECG signs of CCP and PAO2-PaO2 >48 mm Hg during oxygen therapy qualified as a simple and inexpensive tool for targeting subsets of COPD patients with severe or very severe short-term prognosis.  (+info)

Spin-lattice relaxation of laser-polarized xenon in human blood. (67/22785)

The nuclear spin polarization of 129Xe can be enhanced by several orders of magnitude by using optical pumping techniques. The increased sensitivity of xenon NMR has allowed imaging of lungs as well as other in vivo applications. The most critical parameter for efficient delivery of laser-polarized xenon to blood and tissues is the spin-lattice relaxation time (T1) of xenon in blood. In this work, the relaxation of laser-polarized xenon in human blood is measured in vitro as a function of blood oxygenation. Interactions with dissolved oxygen and with deoxyhemoglobin are found to contribute to the spin-lattice relaxation time of 129Xe in blood, the latter interaction having greater effect. Consequently, relaxation times of 129Xe in deoxygenated blood are shorter than in oxygenated blood. In samples with oxygenation equivalent to arterial and venous blood, the 129Xe T1s at 37 degrees C and a magnetic field of 1.5 T were 6.4 s +/- 0.5 s and 4.0 s +/- 0.4 s, respectively. The 129Xe spin-lattice relaxation time in blood decreases at lower temperatures, but the ratio of T1 in oxygenated blood to that in deoxygenated blood is the same at 37 degrees C and 25 degrees C. A competing ligand has been used to show that xenon binding to albumin contributes to the 129Xe spin-lattice relaxation in blood plasma. This technique is promising for the study of xenon interactions with macromolecules.  (+info)

Development of in-vitro-derived bovine embryos cultured in 5% CO2 in air or in 5% O2, 5% CO2 and 90% N2. (68/22785)

To evaluate the effects of a three gas mixture of 5% O2, 5% CO2 and 90% N2 (OCN) on preimplantation embryo development, bovine in-vitro fertilization (IVF) oocytes were cultured in a defined medium (mBECM) with various supplements either under 5% CO2 in air or under OCN. When cultured in mBECM alone, embryo development was significantly stimulated in OCN compared to 5% CO2 in air (experiment 1). In the OCN atmosphere, blastocyst formation was further increased after addition of fetal bovine serum (FBS; 10%) or FBS + cumulus granulosa cells (CGC) to mBECM. The ratio of blastocysts to 8-cell embryos, number of hatched blastocysts and embryo diameter were markedly increased, and zona thickness was decreased after FBS addition. However, development up to the morula stage was fully supported by mBECM alone. There was no significant effect of beta-mercaptoethanol (ME; 10 microM) in OCN. In the 5% CO2 atmosphere, embryo development was significantly (P < 0.05) enhanced after addition of FBS + CGC + ME. In experiment 2, in OCN, FBS added at 60 h post-insemination was effective in stimulating blastocyst formation, but changes in medium volume per oocyte from 13.6 to 1.36 microliters had only a marginal effect. In conclusion, OCN gas mixture provides a suitable atmosphere for early embryo growth in vitro and mBECM + FBS in the optimal culture medium under this atmosphere.  (+info)

Effect of oxygen concentration on human in-vitro fertilization and embryo culture. (69/22785)

In this prospective randomized study on 1380 consecutive in-vitro fertilization (IVF) treatments, the results were compared of culture of human oocytes and embryos for the first 2 or 3 days of development in microdroplets of medium under oil using a gas phase containing either atmospheric (approximately 20%) or reduced (5%) O2 concentrations. No significant differences were found between the two groups cultured under either 5% or 20% O2 in rates of fertilization (60 versus 61%, respectively), embryo development at day 2 or 3, pregnancy (26.6 versus 25.4%, respectively), and implantation (13.4 versus 14.0%, respectively). Culture of surplus embryos under 5% O2 resulted in a significantly higher mean incidence of blastocyst formation per cycle as compared to the 20% O2 group (25.8 +/- 2.0 versus 20.4 +/- 1.9, respectively). The mean number of cells of embryos classified as blastocysts by microscopic observation of a blastocoel was significantly higher in the 5% O2 group as compared to the 20% O2 group, both in blastocysts fixed on day 5 (39.8 +/- 1.7 versus 31.9 +/- 1.9, respectively), as well as those fixed on day 6 (45.6 +/- 2.6 versus 33.7 +/- 3.4, respectively). This difference was due to the fact that significantly more blastocysts of the 20% O2 group had an abnormal low cell number of < 25 as compared to the 5% O2 group, both in blastocysts fixed on day 5 (39 versus 22%, respectively), as well as those fixed on day 6 (43 versus 22%, respectively). To conclude, although culture under 5% O2 leads to slightly improved preimplantation embryonic viability, this effect is either too marginal to result in higher pregnancy rates, or low O2 concentrations exert an effect during the later stages of preimplantation development only.  (+info)

Oxidative stress occurs in perfused rat liver at low oxygen tension by mechanisms involving peroxynitrite. (70/22785)

Ethanol increases free radical formation; however, it was recently demonstrated that it also causes extensive hypoxia in rat liver in vivo. To address this issue, it was hypothesized that peroxynitrite formed in normoxic periportal regions of the liver lobule has its reactivity enhanced in hypoxic pericentral regions where the pH is lower. Via this pathway, peroxynitrite could lead to free radical formation in the absence of oxygen. Livers from fed rats were perfused at low flow rates for 75 min. Under these conditions, periportal regions were well oxygenated but pericentral areas became hypoxic. Low-flow perfusion caused a significant 6-fold increase in nitrotyrosine accumulation in pericentral regions. During the last 20 min of perfusion, the spin-trap alpha-(4-pyridyl-1-oxide)-N-tert-butylnitrone was infused and adducts were collected for electron-spin resonance analysis. A six-line radical adduct signal was detected in perfusate. Direct infusion of peroxynitrite produced a radical adduct with identical coupling constants, and a similar pattern of nitrotyrosine accumulation was observed. Retrograde perfusion at low rates resulted in accumulation of nitrotyrosine in periportal regions. Although the magnitude of the radical in perfusate was increased by ethanol, it was not derived directly from it. Both nitrotyrosine accumulation and radical formation were reduced by inhibition of nitric oxide synthase with N-nitro-L-arginine methyl ester, but not with the inactive D-isomer. Radical formation was decreased nearly completely by superoxide dismutase and N-nitro-L-arginine methyl ester, consistent with the hypothesis that the final prooxidant is a derivative from both NO. and superoxide (i.e., peroxynitrite). These results support the hypothesis that oxidative stress occurs in hypoxic regions of the liver lobule by mechanisms involving peroxynitrite.  (+info)

Convective oxygen transport and tissue oxygen consumption in Weddell seals during aerobic dives. (71/22785)

Unlike their terrestrial counterparts, marine mammals stop breathing and reduce their convective oxygen transport while performing activities (e.g. foraging, courtship, aggressive interactions, predator avoidance and migration) that require sustained power output during submergence. Since most voluntary dives are believed to remain aerobic, the goal of this study was to examine the potential importance of the dive response in optimizing the use of blood and muscle oxygen stores during dives involving different levels of muscular exertion. To accomplish this, we designed a numerical model based on Fick's principle that integrated cardiac output (Vb), regional blood flow, convective oxygen transport (Q(O2)), muscle oxymyoglobin desaturation and regional rates of oxygen consumption (VO2). The model quantified how the optimal matching or mismatching of QO2 to VO2 affected the aerobic dive limit (ADL). We chose an adult Weddell seal Leptonycotes weddellii on which to base our model because of available data on the diving physiology and metabolism of this species. The results show that the use of blood and muscle oxygen stores must be completed at the same time to maximize the ADL for each level of VO2. This is achieved by adjusting Vb (range 19-94 % of resting levels) and muscle QO2 according to the rate of muscle oxygen consumption (VMO2). At higher values of VMO2, Vb and muscle perfusion must increase to maintain an appropriate QO2/VO2 ratio so that available blood and muscle oxygen stores are depleted at the same time. Although the dive response does not sequester blood oxygen exclusively for brain and heart metabolism during aerobic dives, as it does during forced submersion, a reduction in Vb and muscle perfusion below resting levels is necessary to maximize the ADL over the range of diving VO2 (approximately 2-9 ml O2 min-1 kg-1). Despite the reduction in Vb, convective oxygen transport is adequate to maintain aerobic metabolism and normal function in the splanchnic organs, kidneys and other peripheral tissues. As a result, physiological homeostasis is maintained throughout the dive. The model shows that the cardiovascular adjustments known as the dive response enable the diving seal to balance the conflicting metabolic demands of (1) optimizing the distribution and use of blood and muscle oxygen stores to maximize the ADL over the normal range of diving VO2 and (2) ensuring that active muscle receives adequate oxygen as VMO2 increases.  (+info)

Purification and characterization of cold-active L-glutamate dehydrogenase independent of NAD(P) and oxygen. (72/22785)

L-Glutamate dehydrogenase (GLDH) independent of NAD(P) and oxygen was first obtained from the psychrotrophic bacterium Aeromonas sp. L101, originally isolated from the organs of salmon (Oncorhynchus keta). GLDH was purified by a series of chromatography steps on DEAE-Sepharose, Superdex 200pg, Q-Sepharose, CM-Sepharose, and Phenyl-Sepharose. The purified protein was determined to have a molecular mass of 110 kDa and a pI of 5.7. Maximum activity was obtained at 55 degrees C and pH 8.5. The activity of GLDH at 4 and 20 degrees C was 38 and 50%, respectively, of that at 50 degrees C. GLDH was coupled to cytochrome c and several redox dyes including 1-methoxy-5-methylphenazinium methylsulfate (1-Methoxy PMS), 2, 6-dichlorophenylindophenol (DCIP), 9-dimethylaminobenzo[alpha]phenoxazin-7-ium chloride (meldola's blue), 3,3'-[3,3'-dimethoxy-(1,1'-biphenyl)-4, 4'-diyl]-bis[2-(4-nitrophenyl)-5-phenyl-2H tetrazolium chloride] (nitroblue tetrazolium; NBT), and 2-(4-iodophenyl)-3-(4-nitrophenyl)-5-phenyl-2H tetrazolium (INT). The presence of NAD(P) and oxygen gave no oxidation activity to GLDH. Spectroscopic profile and ICP data indicated a b-type cytochrome containing iron.  (+info)