A functional model for O-O bond formation by the O2-evolving complex in photosystem II. (1/649)

The formation of molecular oxygen from water in photosynthesis is catalyzed by photosystem II at an active site containing four manganese ions that are arranged in di-mu-oxo dimanganese units (where mu is a bridging mode). The complex [H2O(terpy)Mn(O)2Mn(terpy)OH2](NO3)3 (terpy is 2,2':6', 2"-terpyridine), which was synthesized and structurally characterized, contains a di-mu-oxo manganese dimer and catalyzes the conversion of sodium hypochlorite to molecular oxygen. Oxygen-18 isotope labeling showed that water is the source of the oxygen atoms in the molecular oxygen evolved, and so this system is a functional model for photosynthetic water oxidation.  (+info)

Towards the reaction mechanism of pyrogallol-phloroglucinol transhydroxylase of Pelobacter acidigallici. (2/649)

Conversion of pyrogallol to phloroglucinol was studied with the molybdenum enzyme transhydroxylase of the strictly anaerobic fermenting bacterium Pelobacter acidigallici. Transhydroxylation experiments in H218O revealed that none of the hydroxyl groups of phloroglucinol was derived from water, confirming the concept that this enzyme transfers a hydroxyl group from the cosubstrate 1,2,3, 5-tetrahydroxybenzene (tetrahydroxybenzene) to the acceptor pyrogallol, and simultaneously regenerates the cosubstrate. This concept requires a reaction which synthesizes the cofactor de novo to maintain a sufficiently high intracellular pool during growth. Some sulfoxides and aromatic N-oxides were found to act as hydroxyl donors to convert pyrogallol to tetrahydroxybenzene. Again, water was not the source of the added hydroxyl groups; the oxides reacted as cosubstrates in a transhydroxylation reaction rather than as true oxidants in a net hydroxylation reaction. No oxidizing agent was found that supported a formation of tetrahydroxybenzene via a net hydroxylation of pyrogallol. However, conversion of pyrogallol to phloroglucinol in the absence of tetrahydroxybenzene was achieved if little pyrogallol and a high amount of enzyme preparation was used which had been pre-exposed to air. Obviously, the enzyme was oxidized by air to form sufficient amounts of tetrahydroxybenzene from pyrogallol to start the reaction. A reaction mechanism is proposed which combines an oxidative hydroxylation with a reductive dehydroxylation via the molybdenum cofactor, and allows the transfer of a hydroxyl group between tetrahydroxybenzene and pyrogallol without involvement of water. With this, the transhydroxylase differs basically from all other hydroxylating molybdenum enzymes which all use water as hydroxyl source.  (+info)

Metabolism of (R)-(+)-pulegone and (R)-(+)-menthofuran by human liver cytochrome P-450s: evidence for formation of a furan epoxide. (3/649)

(R)-(+)-Pulegone, a monoterpene constituent of pennyroyal oil, is a hepatotoxin that has been used in folklore medicine as an abortifacient despite its potential lethal effects. Pulegone is metabolized by human liver cytochrome P-450s to menthofuran, a proximate hepatotoxic metabolite of pulegone. Expressed human liver cytochrome (CYP) P-450s (1A2, 2A6, 2C9, 2C19, 2D6, 2E1, and 3A4) were tested for their ability to catalyze the oxidations of pulegone and menthofuran. Expressed CYP2E1, CYP1A2, and CYP2C19 oxidized pulegone to menthofuran, with respective Km and Vmax values of 29 microM and 8.4 nmol/min/nmol P-450 for CYP2E1, 94 microM and 2.4 nmol/min/nmol P-450 for CYP1A2, and 31 microM and 1.5 nmol/min/nmol P-450 for CYP2C19. The human liver P-450s involved in the metabolism of menthofuran are the same as pulegone except for the addition of CYP2A6. These P-450s were found to oxidize menthofuran to a newly identified metabolite, 2-hydroxymenthofuran, which is an intermediate in the formation of the known metabolites mintlactone and isomintlactone. Based on studies with 18O2 and H218O, 2-hydroxymenthofuran arises predominantly from a dihydrodiol formed from a furan epoxide. CYP2E1, CYP1A2, and CYP2C19 oxidized menthofuran with respective Km and Vmax values of 33 microM and 0.43 nmol/min/nmol P-450 for CYP2E1, 57 microM and 0.29 nmol/min/nmol P-450 for CYP1A2, and 62 microM and 0.26 nmol/min/nmol P-450 for CYP2C19.  (+info)

Origin of graphitic carbon and pentlandite in matrix olivines in the Allende meteorite. (4/649)

Matrix olivines in the Allende carbonaceous chondrite are believed to have formed by condensation processes in the primitive solar nebula. However, transmission electron microscope observations of numerous matrix olivines show that they contain abundant, previously unrecognized, nanometer-sized inclusions of pentlandite and poorly graphitized carbon. Neither of these phases would have been stable at the high-temperature conditions required to condense iron-rich olivine in the solar nebula. The presence of these inclusions is consistent with formation of the olivines by parent body processes that involved overgrowth of fine-grained organic materials and sulfides in the precursor matrix materials.  (+info)

Butanol is superior to water for performing positron emission tomography activation studies. (5/649)

[15(O)]Butanol has been shown to be superior to [15(O)]water for measuring cerebral blood flow with positron emission tomography. This work demonstrates that it is also superior for performing activation studies. Data were collected under three conditions: a visual confrontation animal-naming task, nonsense figure size discrimination, and a nonvisual darkroom control task. Time-activity curves (TAC) were obtained for regions known to be activated by the confrontation naming task to compare absolute uptake and the different kinetics of the two tracers. Also, t statistic maps were calculated from the data of 10 subjects for both tracers and compared for magnitude of change and size of activated regions. Peak uptake in the whole-brain TAC were similar for the two tracers. For all regions and conditions, the washout rate of [15(O)]butanol was 41% greater than that of [15(O)]water. At a threshold of 0, the [15(O)]water and [15(O)]butanol percent difference (nonnormalized) and t statistic (global normalization) images are nearly identical, indicating that the same property is being measured with both tracers. The [15(O)]butanol parametric images displayed at a threshold of /t/ = 5 look similar to the [15(O)]water parametric maps displayed at a threshold of /t/ = 4, which is consistent with the observation that t statistic values in [15(O)]butanol images are generally greater. The t statistic values were equal when the [15(O)]butanol parametric map was created from any subset of 6 subjects and the [15(O)]water parametric map was created from all 10 subjects. Fewer subjects need to be studied with [15(O)]butanol to reach the same statistical power as an [15(O)]water-based study.  (+info)

Isotope dilution spaces of mice injected simultaneously with deuterium, tritium and oxygen-18. (6/649)

The isotope dilution technique for measuring total body water (TBW), and the doubly labelled water (DLW) method for measuring energy expenditure, are both sensitive to small variations in the ratio of the hydrogen to oxygen-18 dilution space. Since the dilution space ratio varies between individuals, there has been much recent debate over what causes this variability (i.e. physiological differences between individuals or analytical error in the isotope determinations), and thus which values (individual or a population mean dilution space ratio) should be employed for TBW and DLW calculations. To distinguish between physiological and analytical variability, we injected 15 non-reproductive and 12 lactating mice (Mus musculus, outbred MF1) simultaneously with deuterium, tritium and oxygen-18. The two hydrogen labels were administered and analysed independently, therefore we expected a strong correlation between dilution space ratios based on deuterium and tritium if most of the variation in dilution spaces was physiological, but only a weak correlation if most of the variation was analytical. Dilution spaces were significantly influenced by reproductive status. Dilution spaces expressed as a percentage of body mass averaged 15.7 % greater in lactating mice than in non-reproductive mice. In addition, the hydrogen tracer employed had a significant effect (deuterium spaces were 2.0 % larger than tritium spaces). Deuterium and tritium dilution spaces, expressed as a percentage of body mass, were highly correlated. Dilution space ratios ranged from 0.952 to 1. 146 when using deuterium, and from 0.930 to 1.103 when using tritium. Dilution space ratios based on deuterium and tritium were also highly correlated. Comparison of standard deviations of the dilution space ratio based on deuterium in vivo and in vitro indicated that only 4.5 % of the variation in the dilution space ratios observed in the mice could be accounted for by analytical variation in the deuterium and oxygen-18 analyses. Although our results include data which were outside the limits previously regarded as biologically possible, the correlations that we detected strongly suggest that variation in the observed dilution space ratio was mostly physiological rather than analytical.  (+info)

Mechanistic studies of phosphoserine phosphatase, an enzyme related to P-type ATPases. (7/649)

Phosphoserine phosphatase belongs to a new class of phosphotransferases forming an acylphosphate during catalysis and sharing three motifs with P-type ATPases and haloacid dehalogenases. The phosphorylated residue was identified as the first aspartate in the first motif (DXDXT) by mass spectrometry analysis of peptides derived from the phosphorylated enzyme treated with NaBH(4) or alkaline [(18)O]H(2)O. Incubation of native phosphoserine phosphatase with phosphoserine in [(18)O]H(2)O did not result in (18)O incorporation in residue Asp-20, indicating that the phosphoaspartate is hydrolyzed, as in P-type ATPases, by attack of the phosphorus atom. Mutagenesis studies bearing on conserved residues indicated that four conservative changes either did not affect (S109T) or caused a moderate decrease in activity (G178A, D179E, and D183E). Other mutations inactivated the enzyme by >80% (S109A and G180A) or even by >/=99% (D179N, D183N, K158A, and K158R). Mutations G178A and D179N decreased the affinity for phosphoserine, suggesting that these residues participate in the binding of the substrate. Mutations of Asp-179 decreased the affinity for Mg(2+), indicating that this residue interacts with the cation. Thus, investigated residues appear to play an important role in the reaction mechanism of phosphoserine phosphatase, as is known for equivalent residues in P-type ATPases and haloacid dehalogenases.  (+info)

Protein-water interaction studied by solvent 1H, 2H, and 17O magnetic relaxation. (8/649)

Previous studies of the magnetic field dependence of the magnetic relaxation rate of solvent protons in protein solutions have indicated that this dependence (called relaxation dispersion) is related to the rotational Brownian motion of the solute proteins. In particular, the dispersion of the longitudinal (spin-lattice) relaxation rate 1/T1 shows a monotonic decrease with increasing field, with an inflection point corresponding to a proton Larmor frequency which is inversely proportional to the orientational relaxation time of the protein. We have now compared the relaxation dispersion of solvent 1H, 2H, and 17O In aqueous solutions of lysozyme (molecular weight 14,700) and 1H and 2H in solutions of hemocyanin (molecular weight 14,7 00) and 1H and 2H in solutions of hemocyanin (molecular weight 9 x 10(6)). The main experimental observation is that the dispersion of the relaxation rates of the three solvent nuclei in lysozyme solutions, normalized to their respective rates in pure water, is essentially the same. This is also true for 1H and 2H relaxation in hemocyanin solutions. These results confirm that entire solvent water molecules, rather than exchanging protons, are involved in the interaction. We have been unable to deduce the correct mechanism to explain the data, but we can eliminate several interaction mechanisms from consideration. For example, all observations combined cannot be explained by a simple two-site model of exchange, in which water molecules are either in sites on the protein with a relaxation rate characteristic of these sites, or else in the bulk solvent (the observed relaxation rate being the weighted average of the two). Also eliminated is the class of models in which the protein molecules induce a preferential partial alignment of neighboring solvent molecules, for example by electrostatic interaction of the electric dipole moments of the water with the electric fields produced by surface charges of the protein molecules. In addition, the idea that relaxation of solvent nuclei is due, in the main, to interactions with protein protons is precluded. Rather, it appears that the protein molecules influence the dynamics of the motion of solvent water molecules in their neighborhood in a manner that imposes on all the solvent molecules a correlation time for their orientational relaxation which equals that of the solute proteins.  (+info)