Synthesis, modeling, and biological evaluation of analogues of the semisynthetic brevetoxin antagonist beta-naphthoyl-brevetoxin. (73/156)

Brevetoxins are neurotoxic compounds produced by the dinoflagellate Karenia brevis. Extensive blooms induce neurotoxic shellfish poisoning (NSP) and asthma-like symptoms in humans. beta-naphthoyl-brevetoxin, the first semisynthetic brevetoxin antagonist, has been defined as the lead compound in the investigation of the mechanisms of bronchoconstriction induced by inhaled brevetoxins and relaxation or reversal of those effects by selected derivatives. In pursuit of more potent and effective brevetoxin antagonists, a series of beta-naphthoyl-brevetoxin analogues have been synthesized. Activities were determined by competitive displacement of tritiated brevetoxin-3 from rat brain synaptosomes and by lung resistance measurements in sheep. Additionally, preliminary computational structural studies have been performed. All analogues bound to rat brain synaptosomes with affinities similar to beta-naphthoyl-brevetoxin but exhibited very different responses in sheep. The biological evaluations along with computational studies suggest that the brevetoxin binding site in rat brain synaptosome might be different from the ones in lung tissue and both steric and electrostatic factors contribute to the efficacy of brevetoxin antagonism.  (+info)

Chemical defenses: from compounds to communities. (74/156)

Marine natural products play critical roles in the chemical defense of many marine organisms and in some cases can influence the community structure of entire ecosystems. Although many marine natural products have been studied for biomedical activity, yielding important information about their biochemical effects and mechanisms of action, much less is known about ecological functions. The way in which marine consumers perceive chemical defenses can influence their health and survival and determine whether some natural products persist through a food chain. This article focuses on selected marine natural products, including okadaic acid, brevetoxins, lyngbyatoxin A, caulerpenyne, bryostatins, and isocyano terpenes, and examines their biosynthesis (sometimes by symbiotic microorganisms), mechanisms of action, and biological and ecological activity. We selected these compounds because their impacts on marine organisms and communities are some of the best-studied among marine natural products. We discuss the effects of these compounds on consumer behavior and physiology, with an emphasis on neuroecology. In addition to mediating a variety of trophic interactions, these compounds may be responsible for community-scale ecological impacts of chemically defended organisms, such as shifts in benthic and pelagic community composition. Our examples include harmful algal blooms; the invasion of the Mediterranean by Caulerpa taxifolia; overgrowth of coral reefs by chemically rich macroalgae and cyanobacteria; and invertebrate chemical defenses, including the role of microbial symbionts in compound production.  (+info)

Florida red tide and human health: a pilot beach conditions reporting system to minimize human exposure. (75/156)

 (+info)

Illness associated with red tide--Nassau County, Florida, 2007. (76/156)

A "red tide" is a harmful algal bloom that occurs when toxic, microscopic algae in seawater proliferate to a higher-than-normal concentration (i.e., bloom), often discoloring the water red, brown, green, or yellow. Red tides can kill fish, birds, and marine mammals and cause illness in humans. Florida red tide is caused by the dinoflagellate Karenia brevis, which produces toxins called brevetoxins and is most commonly found in the Gulf of Mexico; however, K. brevis blooms also can occur along the Atlantic coast. On September 25, 2007, a cluster of respiratory illnesses was reported to the Nassau County Health Department (NCHD) in northeastern Florida. All of the ill persons were employed at a beach restoration worksite by a dredging company operating at Fernandina Beach; they reported symptoms of eye or respiratory irritation (e.g., coughing, sneezing, sniffling, and throat irritation). NCHD and the Florida Department of Health promptly conducted epidemiologic and environmental investigations and determined the illnesses likely were associated with exposure to a red tide along the Atlantic coast. These actions highlight the importance of rapid investigation of health concerns with potential environmental causes to enable timely notification of the public and prevent further illness.  (+info)

Brevetoxin forms covalent DNA adducts in rat lung following intratracheal exposure. (77/156)

 (+info)

Effects of in vitro brevetoxin exposure on apoptosis and cellular metabolism in a leukemic T cell line (Jurkat). (78/156)

 (+info)

Neurotoxins from marine dinoflagellates: a brief review. (79/156)

 (+info)

Yessotoxins, a group of marine polyether toxins: an overview. (80/156)

 (+info)