Isolated 2-methylbutyrylglycinuria caused by short/branched-chain acyl-CoA dehydrogenase deficiency: identification of a new enzyme defect, resolution of its molecular basis, and evidence for distinct acyl-CoA dehydrogenases in isoleucine and valine metabolism. (49/834)

Acyl-CoA dehydrogenase (ACAD) defects in isoleucine and valine catabolism have been proposed in clinically diverse patients with an abnormal pattern of metabolites in their urine, but they have not been proved enzymatically or genetically, and it is unknown whether one or two ACADs are involved. We investigated a patient with isolated 2-methylbutyrylglycinuria, suggestive of a defect in isoleucine catabolism. Enzyme assay of the patient's fibroblasts, using 2-methylbutyryl-CoA as substrate, confirmed the defect. Sequence analysis of candidate ACADs revealed heterozygosity for the common short-chain ACAD A625 variant allele and no mutations in ACAD-8 but a 100-bp deletion in short/branched-chain ACAD (SBCAD) cDNA from the patient. Our identification of the SBCAD gene structure (11 exons; >20 kb) enabled analysis of genomic DNA. This showed that the deletion was caused by skipping of exon 10, because of homozygosity for a 1228G-->A mutation in the patient. This mutation was not present in 118 control chromosomes. In vitro transcription/translation experiments and overexpression in COS cells confirmed the disease-causing nature of the mutant SBCAD protein and showed that ACAD-8 is an isobutyryl-CoA dehydrogenase and that both wild-type proteins are imported into mitochondria and form tetramers. In conclusion, we report the first mutation in the SBCAD gene, show that it results in an isolated defect in isoleucine catabolism, and indicate that ACAD-8 is a mitochondrial enzyme that functions in valine catabolism.  (+info)

The function of Arg-94 in the oxidation and decarboxylation of glutaryl-CoA by human glutaryl-CoA dehydrogenase. (50/834)

Glutaryl-CoA dehydrogenase catalyzes the oxidation and decarboxylation of glutaryl-CoA to crotonyl-CoA and CO(2). Inherited defects in the protein cause glutaric acidemia type I, a fatal neurologic disease. Glutaryl-CoA dehydrogenase is the only member of the acyl-CoA dehydrogenase family with a cationic residue, Arg-94, situated in the binding site of the acyl moiety of the substrate. Crystallographic investigations suggest that Arg-94 is within hydrogen bonding distance of the gamma-carboxylate of glutaryl-CoA. Substitution of Arg-94 by glycine, a disease-causing mutation, and by glutamine, which is sterically more closely related to arginine, reduced k(cat) of the mutant dehydrogenases to 2-3% of k(cat) of the wild type enzyme. K(m) of these mutant dehydrogenases for glutaryl-CoA increases 10- to 16-fold. The steady-state kinetic constants of alternative substrates, hexanoyl-CoA and glutaramyl-CoA, which are not decarboxylated, are modestly affected by the mutations. The latter changes are probably due to steric and polar effects. The dissociation constants of the non-oxidizable substrate analogs, 3-thiaglutaryl-CoA and acetoacetyl-CoA, are not altered by the mutations. However, abstraction of a alpha-proton from 3-thiaglutaryl-CoA, to yield a charge transfer complex with the oxidized flavin, is severely limited. In contrast, abstraction of the alpha-proton of acetoacetyl-CoA by Arg-94 --> Gln mutant dehydrogenase is unaffected, and the resulting enolate forms a charge transfer complex with the oxidized flavin. These experiments indicate that Arg-94 does not make a major contribution to glutaryl-CoA binding. However, the electric field of Arg-94 may stabilize the dianions resulting from abstraction of the alpha-proton of glutaryl-CoA and 3-thiaglutaryl-CoA, both of which contain gamma-carboxylates. It is also possible that Arg-94 may orient glutaryl-CoA and 3-thiaglutaryl-CoA for abstraction of an alpha-proton.  (+info)

NADPH:protochlorophyllide oxidoreductase from Synechocystis: overexpression, purification and preliminary characterisation. (51/834)

NADPH:protochlorophyllide oxidoreductase (POR) catalyses the light-dependent reduction of protochlorophyllide to chlorophyllide, a key regulatory reaction in the chlorophyll biosynthetic pathway. POR from the cyanobacterium Synechocystis has been overproduced in Escherichia coli with a hexahistidine tag at the N-terminus. This enzyme (His(6)-POR) has been purified to homogeneity and a preliminary characterisation of its kinetic and substrate binding properties is presented. Chemical modification experiments have been used to demonstrate inhibition of POR activity by the thiol-specific reagent N-ethyl maleimide. Substrate protection experiments reveal that the modified Cys residues are involved in either substrate binding or catalysis.  (+info)

The influence of glycerol and chloroplast lipids on the spectral shifts of pigments associated with NADPH: protochlorophyllide oxidoreductase from Avena sativa L. (52/834)

Dark-grown angiosperm seedlings lack chlorophylls, but accumulate protochlorophyllide a complexed with the light-dependent enzyme NADPH:protochlorophyllide oxidoreductase. Previous investigators correlated spectral heterogeneity of in vivo protochlorophyllide forms and a shift of chlorophyllide forms from 680 to 672 nm (Shibata shift) occurring after irradiation, with intact membrane structures which are destroyed by solubilization. We demonstrate here that the various protochlorophyllide forms and the Shibata shift which disappear upon solubilization are restored if the reconstituted complex is treated with plastid lipids and 80% (w/v) glycerol. We hypothesize that the lipids can form a cubic phase and that this is the precondition in vitro and in vivo for the observed spectral properties before and after irradiation.  (+info)

Enoate reductases of Clostridia. Cloning, sequencing, and expression. (53/834)

The enr genes specifying enoate reductases of Clostridium tyrobutyricum and Clostridium thermoaceticum were cloned and sequenced. Sequence comparison shows that enoate reductases are similar to a family of flavoproteins comprising 2,4-dienoyl-coenzyme A reductase from Escherichia coli and old yellow enzyme from yeast. The C. thermoaceticum enr gene product was expressed in recombinant Escherichia coli cells growing under anaerobic conditions. The recombinant enzyme was purified and characterized.  (+info)

Aberrant pathways in the late stages of cholesterol biosynthesis in the rat. Origin and metabolic fate of unsaturated sterols relevant to the Smith-Lemli-Opitz syndrome. (54/834)

Minor aberrant pathways of cholesterol biosynthesis normally produce only trace levels of abnormal sterol metabolites but may assume major importance when an essential biosynthetic step is blocked. Cholesta-5,8-dien-3beta-ol, its Delta(5,7) isomer, and other noncholesterol sterols accumulate in subjects with the Smith-Lemli-Opitz syndrome (SLOS), a severe developmental disorder caused by a defective Delta(7) sterol reductase gene. We have explored the formation and metabolism of unsaturated sterols relevant to SLOS by incubating tritium-labeled Delta(5,8), Delta(6, 8), Delta(6,8(14)), Delta(5,8(14)), and Delta(8) sterols with rat liver preparations. More than 60 different incubations were carried out with washed microsomes or the 10,000 g supernatant under aerobic or anaerobic conditions; some experiments included addition of cofactors, fenpropimorph (a Delta(8);-Delta(7) isomerase inhibitor), and/or AY-9944 (a Delta(7) reductase inhibitor). The tritium-labeled metabolites from each incubation were identified by silver ion high performance liquid chromatography on the basis of their coelution with unlabeled authentic standards, as free sterols and/or acetate derivatives. The Delta(5,8) sterol was converted slowly to cholesterol via the Delta(5,7) sterol, which also slowly isomerized back to the Delta(5,8) sterol. The Delta(6,8) sterol was metabolized rapidly to cholesterol by an oxygen-requiring pathway via the Delta(7,9(11)), Delta(8), Delta(7), and Delta(5,7) sterols as well as by an oxygen-independent route involving initial isomerization to the Delta(5,7) sterol. The Delta(8) sterol was partially metabolized to Delta(5,8), Delta(6,8), Delta(7,9(11)), and Delta(5,7,9(11)) sterols when isomerization to Delta(7) was blocked.The combined results were used to formulate a scheme of normal and aberrant biosynthetic pathways that illuminate the origin and metabolic fate of abnormal sterols observed in SLOS and chondrodysplasia punctata.  (+info)

Analysis of the alternative pathways for the beta-oxidation of unsaturated fatty acids using transgenic plants synthesizing polyhydroxyalkanoates in peroxisomes. (55/834)

Degradation of fatty acids having cis-double bonds on even-numbered carbons requires the presence of auxiliary enzymes in addition to the enzymes of the core beta-oxidation cycle. Two alternative pathways have been described to degrade these fatty acids. One pathway involves the participation of the enzymes 2, 4-dienoyl-coenzyme A (CoA) reductase and Delta(3)-Delta(2)-enoyl-CoA isomerase, whereas the second involves the epimerization of R-3-hydroxyacyl-CoA via a 3-hydroxyacyl-CoA epimerase or the action of two stereo-specific enoyl-CoA hydratases. Although degradation of these fatty acids in bacteria and mammalian peroxisomes was shown to involve mainly the reductase-isomerase pathway, previous analysis of the relative activity of the enoyl-CoA hydratase II (also called R-3-hydroxyacyl-CoA hydro-lyase) and 2,4-dienoyl-CoA reductase in plants indicated that degradation occurred mainly through the epimerase pathway. We have examined the implication of both pathways in transgenic Arabidopsis expressing the polyhydroxyalkanoate synthase from Pseudomonas aeruginosa in peroxisomes and producing polyhydroxyalkanoate from the 3-hydroxyacyl-CoA intermediates of the beta-oxidation cycle. Analysis of the polyhydroxyalkanoate synthesized in plants grown in media containing cis-10-heptadecenoic or cis-10-pentadecenoic acids revealed a significant contribution of both the reductase-isomerase and epimerase pathways to the degradation of these fatty acids.  (+info)

Biochemical and genetic aspects of 7-dehydrocholesterol reductase and Smith-Lemli-Opitz syndrome. (56/834)

In recent years, several inherited human disorders caused by defects in cholesterol biosynthesis have been identified. These are characterized by malformations, multiple congenital anomalies, mental and growth retardation and/or skeletal and skin abnormalities indicating a pivotal role of cholesterol in morphogenesis and embryonic development. The first recognized and most common of these developmental disorders is Smith-Lemli-Opitz syndrome, an autosomal recessive trait caused by mutations in the DHCR7 gene resulting in a deficiency of the encoded sterol Delta(7)-reductase, alternatively called 7-dehydrocholesterol reductase (EC 1.3.1.21). This enzyme catalyzes the final step in cholesterol biosynthesis, which is the reduction of the Delta(7) double bond of 7-dehydrocholesterol to produce cholesterol.  (+info)