Nitration modifying function of proteins, hormones and neurotransmitters. (65/22885)

Several lines of evidence have been accumulated for occurrence of nitration in vivo. In this brief review, we summarized nitration studies on functional changes of proteins, hormones and neurotransmitters, before as well as after the discovery of peroxynitrite. Most of nitrated molecules exhibit less active properties than the parental compounds. It is still unknown whether nitration is merely a footprint of oxidative stress, an important pathway of nitric oxide metabolisms or a part of integral processes for maintaining cellular homeostasis.  (+info)

Immunohistochemical evidence for an increased oxidative stress and carbonyl modification of proteins in diabetic glomerular lesions. (66/22885)

Advanced glycation end products (AGE) include a variety of protein adducts whose accumulation has been implicated in tissue damage associated with diabetic nephropathy (DN). It was recently demonstrated that among AGE, glycoxidation products, whose formation is closely linked to oxidation, such as carboxymethyllysine (CML) and pentosidine, accumulate in expanded mesangial matrix and nodular lesions in DN, in colocalization with malondialdehyde-lysine (MDA-lysine), a lipoxidation product, whereas pyrraline, another AGE structure whose deposition is rather independent from oxidative stress, was not found within diabetic glomeruli. Because CML, pentosidine, and MDA-lysine are all formed under oxidative stress by carbonyl amine chemistry between protein amino group and carbonyl compounds, their colocalization suggests a local oxidative stress and increased protein carbonyl modification in diabetic glomerular lesions. To address this hypothesis, human renal tissues from patients with DN or IgA nephropathy were examined with specific antibodies to characterize most, if not all, carbonyl modifications of proteins by autoxidation products of carbohydrates, lipids, and amino acids: CML (derived from carbohydrates, lipids, and amino acid), pentosidine (derived from carbohydrates), MDA-lysine (derived from lipids), 4-hydroxynonenal-protein adduct (derived from lipids), and acrolein-protein adduct (derived from lipids and amino acid). All of the protein adducts were identified in expanded mesangial matrix and nodular lesions in DN. In IgA nephropathy, another primary glomerular disease leading to end-stage renal failure, despite positive staining for MDA-lysine and 4-hydroxynonenal-protein adduct in the expanded mesangial area, CML, pentosidine, and acrolein-protein adduct immunoreactivities were only faint in glomeruli. These data suggest a broad derangement in nonenzymatic biochemistry in diabetic glomerular lesions, and implicate an increased local oxidative stress and carbonyl modification of proteins in diabetic glomerular tissue damage ("carbonyl stress").  (+info)

The vasoconstrictor effect of 8-epi prostaglandin F2alpha in the hypoxic rat heart. (67/22885)

1. 8-epi prostaglandin (PG) F2alpha, a vasoconstrictor isoprostane, is synthesized under conditions of oxidative stress. This study was undertaken to investigate the vasoconstrictor effect of 8-epi PGF2alpha in the coronary circulation before and after a period of oxidative stress. 2. The effects of the isoprostane 8-epi PGF2alpha and the thromboxane mimetic U46619 were compared in the isolated rat heart perfused in the Langendorff mode at a constant pressure of 80 mmHg. 3. In normal hearts U46619 caused a dose-related reduction in coronary flow (ED50 4.7+/-2.2 nmol). In contrast, 8-epi PGF2alpha had no effect. 4. After reducing perfusion pressure to 20 mmHg for 30 min and reperfusing at 80 mmHg, the dose-response curve to U46619 was unaffected. In contrast, 8-epi PGF2alpha caused a dose-dependent drop in coronary flow (ED50 52.6+/-12.7 nmol), producing a similar maximal reduction to U46619. 5. Similarly, after perfusion with xanthine and xanthine oxidase for either 15 or 30 min there was little change in the response to U46619 in comparison to control hearts. In contrast, 8-epi PGF2alpha caused a reduction in coronary flow similar to that produced by U46619, the magnitude of the response being related to the length of xanthine/xanthine oxidase perfusion. 6. Responses to both U46619 and 8-epi PGF2alpha after xanthine/xanthine oxidase perfusion were blocked by the selective thromboxane receptor antagonist SQ29548 10(-7) M. 7. These results show that oxidative stress in the isolated perfused rat heart reveals a potent vasoconstrictor effect of the isoprostane 8-epi PGF2alpha by an action on the thromboxane receptor. 8. The data also suggest that, since 8-epi PGF2alpha is a partial agonist at the thromboxane receptor, thromboxane receptor reserve is increased by oxidative stress.  (+info)

Regulation of Dictyostelium protein-tyrosine phosphatase-3 (PTP3) through osmotic shock and stress stimulation and identification of pp130 as a PTP3 substrate. (68/22885)

Osmotic shock and growth-medium stimulation of Dictyostelium cells results in rapid cell rounding, a reduction in cell volume, and a rearrangement of the cytoskeleton that leads to resistance to osmotic shock. Osmotic shock induces the activation of guanylyl cyclase, a rise in cGMP mediating the phosphorylation of myosin II, and the tyrosine phosphorylation of actin and the approximately 130-kDa protein (p130). We present data suggesting that signaling pathways leading to these different responses are, at least in part, independent. We show that a variety of stresses induce the Ser/Thr phosphorylation of the protein-tyrosine phosphatase-3 (PTP3). This modification does not alter PTP3 catalytic activity but correlates with its translocation from the cytosol to subcellular structures that co-localize to endosomal vesicles. This translocation is independent of PTP3 activity. Mutation of the catalytically essential Cys to a Ser results in inactive PTP3 that forms a stable complex with tyrosine-phosphorylated p130 (pp130) in vivo and in vitro, suggesting that PTP3 has a substrate specificity for pp130. The data suggest that stresses activate several interacting signaling pathways controlled by Ser/Thr and Tyr phosphorylation, which, along with the activation of guanylyl cyclase, mediate the ability of this organism to respond to adverse changes in the external environment.  (+info)

Oxidative stress-induced destruction of the yeast C-type cyclin Ume3p requires phosphatidylinositol-specific phospholipase C and the 26S proteasome. (69/22885)

The yeast UME3 (SRB11/SSN3) gene encodes a C-type cyclin that represses the transcription of the HSP70 family member SSA1. To relieve this repression, Ume3p is rapidly destroyed in cells exposed to elevated temperatures. This report demonstrates that Ume3p levels are also reduced in cultures subjected to ethanol shock, oxidative stress, or carbon starvation or during growth on nonfermentable carbons. Of the three elements (RXXL, PEST, and cyclin box) previously shown to be required for heat-induced Ume3p destruction, only the cyclin box regulates Ume3p degradation in response to these stressors. The one exception observed was growth on nonfermentable carbons, which requires the PEST region. These findings indicate that yeast cells contain multiple, independent pathways that mediate stress-induced Ume3p degradation. Ume3p destruction in response to oxidative stress, but not to ethanol treatment, requires DOA4 and UMP1, two factors required for 26S proteasome activity. This result for the first time implicates ubiquitin-mediated proteolysis in C-type cyclin regulation. Similarly, the presence of a membrane stabilizer (sorbitol) or the loss of phosphatidylinositol-specific phospholipase C (PLC1) protects Ume3p from oxidative-stress-induced degradation. Finally, a ume3 null allele suppresses the growth defect of plc1 mutants in response to either elevated temperature or the presence of hydrogen peroxide. These results indicate that the growth defects observed in plc1 mutants are due to the failure to downregulate Ume3p. Taken together, these findings support a model in which Plc1p mediates an oxidative-stress signal from the plasma membrane that triggers Ume3p destruction through a Doa4p-dependent mechanism.  (+info)

The Saccharomyces cerevisiae homologues of endonuclease III from Escherichia coli, Ntg1 and Ntg2, are both required for efficient repair of spontaneous and induced oxidative DNA damage in yeast. (70/22885)

Endonuclease III from Escherichia coli is the prototype of a ubiquitous DNA repair enzyme essential for the removal of oxidized pyrimidine base damage. The yeast genome project has revealed the presence of two genes in Saccharomyces cerevisiae, NTG1 and NTG2, encoding proteins with similarity to endonuclease III. Both contain the highly conserved helix-hairpin-helix motif, whereas only one (Ntg2) harbors the characteristic iron-sulfur cluster of the endonuclease III family. We have characterized these gene functions by mutant and enzyme analysis as well as by gene expression and intracellular localization studies. Targeted gene disruption of NTG1 and NTG2 produced mutants with greatly increased spontaneous and hydrogen peroxide-induced mutation frequency relative to the wild type, and the mutation response was further increased in the double mutant. Both enzymes were found to remove thymine glycol and 2, 6-diamino-4-hydroxy-5-N-methylformamidopyrimidine (faPy) residues from DNA with high efficiency. However, on UV-irradiated DNA, saturating concentrations of Ntg2 removed only half of the cytosine photoproducts released by Ntg1. Conversely, 5-hydroxycytosine was removed efficiently only by Ntg2. The enzymes appear to have different reaction modes, as judged from much higher affinity of Ntg2 for damaged DNA and more efficient borhydride trapping of Ntg1 to abasic sites in DNA despite limited DNA binding. Northern blot and promoter fusion analysis showed that NTG1 is inducible by cell exposure to DNA-damaging agents, whereas NTG2 is constitutively expressed. Ntg2 appears to be a nuclear enzyme, whereas Ntg1 was sorted both to the nucleus and to the mitochondria. We conclude that functions of both NTG1 and NTG2 are important for removal of oxidative DNA damage in yeast.  (+info)

Age-independent oxidative stress in elderly patients with non-insulin-dependent diabetes mellitus. (71/22885)

Impaired antioxidant defence is implicated in the development of cardiovascular complications in non-insulin-dependent diabetes (NIDDM). However, as many of these patients are elderly, observed changes in antioxidant status may be due to the patient's age rather than their disease. We sampled blood from 47 elderly NIDDM patients (21 male and 26 female; mean age +/- SD, 75.62 +/- 7.97 years), 66 young (30 male and 36 female; 24.52 +/- 4.72 years) and 58 healthy elderly volunteers (17 male and 41 female; 70.74 +/- 4.85 years), and measured the antioxidant glutathione, the marker for free-radical-damage lipid hydroperoxide products (LHP), vitamin E and total antioxidant capacity (TAC). There was a significant increase in LHP in the healthy elderly group compared with the young volunteers (3.14 +/- 1.5 vs. 2.14 +/- 1.38 mumol/l, p < 0.01). The values were much higher in NIDDM patients (7.02 +/- 2.29 mumol/l, p < 0.0001 vs. healthy elderly). There was a reduction in TAC in healthy elderly compared with the young (359.99 +/- 54.82 vs. 471.47 +/- 94.29 mumol/l trolox equivalents, p < 0.0001), but there was no further reduction in NIDDM patients. Similarly, glutathione was reduced to the same degree in healthy elderly and NIDDM patients (0.29 +/- 0.09, 0.30 +/- 0.11 vs. 0.54 +/- 0.19 mumol/l in young volunteers, p < 0.0001). Vitamin E concentrations were comparable in all groups (26.34 +/- 5.39 young volunteers, 31.50 +/- 8.23 healthy elderly and 30.98 +/- 9.03 mumol/l NIDDM patients), but after correction for serum cholesterol there was a significant reduction in the diabetic group compared with the young, but not with the elderly (5.54 +/- 1.55 vs. 6.67 +/- 1.86 vs. 6.31 +/- 1.85 (mumol/l)/(mmol/l), p < 0.01). We have demonstrated an age-dependent reduction in total antioxidant capacity and glutathione defence and an age-independent increase in LHP in elderly patients with NIDDM. Reduced concentrations of vitamin E were demonstrated in NIDDM patients compared with young, but not elderly, volunteers. Increased oxidative damage occurs independently of age in NIDDM patients despite comparable antioxidant defences in this age group.  (+info)

Manganese superoxide dismutase mediates the early release of mitochondrial cytochrome C and subsequent DNA fragmentation after permanent focal cerebral ischemia in mice. (72/22885)

Recent studies have shown that release of mitochondrial cytochrome c is a critical step in the apoptosis process. We have reported that cytosolic redistribution of cytochrome c in vivo occurred after transient focal cerebral ischemia (FCI) in rats and preceded the peak of DNA fragmentation. Although the involvement of reactive oxygen species in the cytosolic redistribution of cytochrome c in vitro has been suggested, the detailed mechanism by which cytochrome c release is mediated in vivo has not yet been established. Also, the role of mitochondrial oxidative stress in cytochrome c release is unknown. These issues can be addressed using knock-out mutants that are deficient in the level of the mitochondrial antioxidant manganese superoxide dismutase (Mn-SOD). In this study we examined the subcellular distribution of the cytochrome c protein in both wild-type mice and heterozygous knock-outs of the Mn-SOD gene (Sod2 -/+) after permanent FCI, in which apoptosis is assumed to participate. Cytosolic cytochrome c was detected as early as 1 hr after ischemia, and correspondingly, mitochondrial cytochrome c showed a significant reduction 2 hr after ischemia (p < 0.01). Cytosolic accumulation of cytochrome c was significantly higher in Sod2 -/+ mice compared with wild-type animals (p < 0.05). N-benzyloxycarbonyl-val-ala-asp-fluoromethyl ketone (z-VAD.FMK), a nonselective caspase inhibitor, did not affect cytochrome c release after ischemia. A significant amount of DNA laddering was detected 24 hr after ischemia and increased in Sod2 -/+ mice. These data suggest that Mn-SOD blocks cytosolic release of cytochrome c and could thereby reduce apoptosis after permanent FCI.  (+info)