Involvement of N-acetylcysteine-sensitive pathways in ricin-induced apoptotic cell death in U937 cells. (57/22885)

We have found that the antioxidant N-acetylcysteine (NAC) strongly inhibited ricin-induced apoptotic cell death in U937 cells (human myeloid leukemia), as judged by cytotoxicity, nuclear morphological change, and DNA fragmentation. Consistent with these observations, a significant depletion of cellular glutathione was observed in ricin-treated cells, and NAC prevented the decrease in cellular glutathione. On the other hand, among the caspase inhibitors tested, Z-Asp-CH2-DCB, which inhibited ricin cytotoxicity, also suppressed ricin-mediated glutathione depletion, while NAC did not affect the generation of caspase-3 like activity in ricin-treated cells. These results suggest that glutathione loss takes place downstream from caspase activation during the ricin-induced apoptotic process. Treatment with a specific inhibitor of glutathione biosynthesis, buthionine sulfoximine (BSO) failed to induce apoptosis, and had no effect on the overall extent of ricin-induced apoptosis, even though the glutathione level was decreased to less than 5% of the control level. However, NAC still protected against ricin-induced apoptosis in the BSO-treated cells. We conclude that glutathione loss is one of several apoptotic changes caused by ricin, but is not a sufficient factor for the progress of apoptosis. NAC may prevent ricin-induced apoptosis through maintaining an intracellular reducing condition by acting as a thiol supplier.  (+info)

Genes, oxidative stress, and the risk of chronic obstructive pulmonary disease. (58/22885)

BACKGROUND: The first-pass metabolism of foreign compounds in the lung is an important protective mechanism against oxidative stress. We investigated whether polymorphisms in the gene for microsomal epoxide hydrolase (mEPHX), an enzyme involved in this protective process, had any bearing on individual susceptibility to the development of chronic obstructive pulmonary disease (COPD) and emphysema. METHODS: We designed PCR-based genotyping assays to detect variant forms of mEPHX that confer slow and fast activity. We used these assays to screen 203 blood-donor controls and groups of patients with asthma (n = 57), lung cancer (n = 50), COPD (n = 68), and emphysema (n = 94), who were attending specialised clinics in Edinburgh, UK. FINDINGS: The proportion of individuals with innate slow mEPHX activity (homozygotes) was significantly higher in both the COPD group and the emphysema group than in the control group (COPD 13 [19%] vs control 13 [6%]; emphysema 21 [22%] vs 13 [6%]). The odds ratios for homozygous slow activity versus all other phenotypes were 4.1 (95% CI 1.8-9.7) for COPD and 5.0 (2.3-10.9) for emphysema. INTERPRETATION: Genetic polymorphisms in xenobiotic enzymes may have a role in individual susceptibility to oxidant-related lung disease. Epoxide derivatives of cigarette-smoke components may be the cause of some of the lung damage characteristics of these diseases.  (+info)

Increased levels of exhaled carbon monoxide in bronchiectasis: a new marker of oxidative stress. (59/22885)

BACKGROUND: Bronchiectasis is a chronic inflammatory lung disease associated with increased production of oxidants due mostly to neutrophilic inflammation. Induction of heme oxygenase (HO-1) by reactive oxygen species is a general cytoprotective mechanism against oxidative stress. HO-1 catabolises heme to bilirubin, free iron and carbon monoxide (CO). Exhaled CO measurements may therefore reflect an oxidative stress and be clinically useful in the detection and management of inflammatory lung disorders. METHODS: The levels of exhaled CO of 42 non-smoking patients with bronchiectasis treated or not treated with inhaled corticosteroids were compared with CO levels in 37 normal non-smoking subjects. RESULTS: Levels of exhaled CO were raised in patients with bronchiectasis, both those treated with inhaled corticosteroids (n = 27, median 5.5 ppm, 95% CI 5.16 to 7.76) and those not treated with inhaled corticosteroids (n = 15, median 6.0 ppm. 95% CI 4.74 to 11.8), compared with normal subjects (n = 37, median 3.0 ppm, 95% CI 2.79 to 3.81, p = 0.0024). There was no correlation between exhaled CO and HbCO levels (r = 0.42, p = 0.12) in normal subjects (n = 7), nor between the urine cotinine concentration and exhaled CO levels (r = 0.2, p = 0.12). CONCLUSIONS: Increased levels of exhaled CO may reflect induction of HO-1 and oxidative stress in bronchiectasis. Measurement of exhaled CO may be useful in the management of bronchiectasis and possibly other chronic inflammatory lung disorders.  (+info)

Glutathione S-conjugate transport in hepatocytes entering the cell cycle is preserved by a switch in expression from the apical MRP2 to the basolateral MRP1 transporting protein. (60/22885)

The multidrug resistance protein MRP1 and its isoform MRP2 are involved in ATP-dependent glutathione S-conjugate transport and have similar substrate specificities. MRP2 mediates hepatic organic anion transport into bile. The physiological function of MRP1 in hepatocytes is unknown. Previous results show that MRP1 expression is low in quiescent hepatocytes but increased after SV40 large T antigen immortalization, suggesting a relationship with cell proliferation. Therefore, we determined mrp1 and mrp2 expression in rat hepatocytes in relation to the cell cycle. By varying cell density we obtained cultures that are mainly in G1 (high density) or have progressed into the S-phase or beyond (low density). In both cultures mrp1 mRNA and protein levels are increased, concomitantly with the disappearance of mrp2. This switch from mrp2 to mrp1 occurs in the G1 phase of the cell cycle and is associated with a decreased cell polarity. Mrp1 is located on lateral membranes or on intracellular vesicles, depending on whether cell-cell contact is established. In both locations mrp1 contributes to cellular glutathione S-conjugate efflux and protects against oxidative stress-inducing quinones. We conclude that a switch in expression from the apically located mrp2 to the basolaterally located mrp1 preserves glutathione S-conjugate transport in hepatocytes entering the cell cycle and protects against certain cytotoxic agents.  (+info)

Exogenous administration of heme oxygenase-1 by gene transfer provides protection against hyperoxia-induced lung injury. (61/22885)

Heme oxygenase-1 (HO-1) confers protection against a variety of oxidant-induced cell and tissue injury. In this study, we examined whether exogenous administration of HO-1 by gene transfer could also confer protection. We first demonstrated the feasibility of overexpressing HO-1 in the lung by gene transfer. A fragment of the rat HO-1 cDNA clone containing the entire coding region was cloned into plasmid pAC-CMVpLpA, and recombinant adenoviruses containing the rat HO-1 cDNA fragment Ad5-HO-1 were generated by homologous recombination. Intratracheal administration of Ad5-HO-1 resulted in a time-dependent increase in expression of HO-1 mRNA and protein in the rat lungs. Increased HO-1 protein expression was detected diffusely in the bronchiolar epithelium of rats receiving Ad5-HO-1, as assessed by immunohistochemical studies. We then examined whether ectopic expression of HO-1 could confer protection against hyperoxia-induced lung injury. Rats receiving Ad5-HO-1, but not AdV-betaGal, a recombinant adenovirus expressing Escherichia coli beta-galactosidase, before exposure to hyperoxia (>99% O2) exhibited marked reduction in lung injury, as assessed by volume of pleural effusion and histological analyses (significant reduction of edema, hemorrhage, and inflammation). In addition, rats receiving Ad5-HO-1 also exhibited increased survivability against hyperoxic stress when compared with rats receiving AdV-betaGal. Expression of the antioxidant enzymes manganese superoxide dismutase (Mn-SOD) and copper-zinc superoxide dismutase (CuZn-SOD) and of L-ferritin and H-ferritin was not affected by Ad5-HO-1 administration. Furthermore, rats treated with Ad5-HO-1 exhibited attenuation of hyperoxia-induced neutrophil inflammation and apoptosis. Taken together, these data suggest the feasibility of high-level HO-1 expression in the rat lung by gene delivery. To our knowledge, we have demonstrated for the first time that HO-1 can provide protection against hyperoxia-induced lung injury in vivo by modulation of neutrophil inflammation and lung apoptosis.  (+info)

17 beta-estradiol reduces glycoxidative damage in the artery wall. (62/22885)

Glycoxidative damage in the vasculature has been linked to atherosclerotic cardiovascular disease. Estrogens protect against the development and progression of atherosclerosis. Because estrogens are potent antioxidants that also effect glucose metabolism, part of their protection against atherosclerosis could be through attenuation of glycoxidative damage in the vascular wall. In this study, we tested the hypothesis that chronic estradiol administration is associated with decreased levels of glycoxidative damage in arterial walls. We harvested and examined iliac arteries from ovariectomized, 8-month-old rats that had been implanted for 6 months with 1 of the following subcutaneous hormone pellets: low estradiol (2.5 mg estradiol), high estradiol (25 mg estradiol), P4 (200 mg progesterone), low estradiol and P4, placebo (no hormone), or control (no implant). Using pentosidine as a biomarker of glycoxidative damage, we found that all vessels from rats receiving estradiol (low estradiol, high estradiol, and low estradiol+P4) exhibited a 50% reduction in glycoxidative damage compared with P4, placebo, and control vessels (P<0.05). Consistent with this finding, we observed that estradiol-treated rats had a 30% decrease in tissue levels of hydroperoxides, a marker of oxidative stress. Finally, estradiol-treated rats had a small, but significant, decrease in plasma glucose levels (P<0.01). In summary, we report the novel finding that chronic estrogen administration is associated with significant decreases in glycoxidative damage and oxidative stress in the arterial wall. It seems likely that these actions may constitute a mechanism by which estrogen attenuates the progression of atherosclerosis.  (+info)

Does tomato consumption effectively increase the resistance of lymphocyte DNA to oxidative damage? (63/22885)

BACKGROUND: Lycopene, the main carotenoid in tomato, has been shown to be a potent antioxidant in vitro. However, there is no significant evidence of its antioxidant action in vivo. OBJECTIVE: We evaluated the effect of tomato intake on plasma carotenoid concentrations and lymphocyte resistance to oxidative stress. DESIGN: Ten healthy women (divided into 2 groups of 5 subjects each) ate a diet containing tomato puree (providing 16.5 mg lycopene) and a tomato-free diet for 21 d each in a crossover design. Before and after each diet period, plasma carotenoid concentrations and primary lymphocyte resistance to oxidative stress (evaluated by means of single-cell gel electrophoresis) were analyzed. RESULTS: After the first 21-d experimental period, total plasma lycopene concentrations increased by 0.5 micromol/L (95% CI: 0.14, 0.87) in the group that consumed the tomato diet and decreased by 0.2 micromol/L (95% CI: -0.11, -0.30) in the group that consumed the tomato-free diet (P < 0.001). Tomato consumption also had an effect on cellular antioxidant capacity: lymphocyte DNA damage after ex vivo treatment with hydrogen peroxide decreased by 33% (95% CI: 0.8%, 61%; P < 0.05) and by 42% (95% CI: 5.1%, 78%; P < 0.05) in the 2 groups of subjects after consumption of the tomato diet. CONCLUSION: The consumption of tomato products may reduce the susceptibility of lymphocyte DNA to oxidative damage.  (+info)

Lp(a) and LDL induce apoptosis in human endothelial cells and in rabbit aorta: role of oxidative stress. (64/22885)

BACKGROUND: Atherogenic lipoproteins cause injury to the vascular wall in the early phase of atherogenesis. We assessed the effects of native (nLDL) and oxidized (oxLDL) low-density lipoprotein (LDL) and lipoprotein (a) [Lp(a)] on O2- formation and cell death in cultured human umbilical vein endothelial cells (HUVECs) and rabbit aorta (RA). METHODS AND RESULTS: O2- formation of HUVECs and RA segments was not influenced by nLDL, but was dose dependently increased by oxLDL and was moderately increased by nLp(a). oxLp(a) was the most potent stimulus for O2- formation, increasing it in HUVECs by 356% at 5 micrograms/ml and in RA by 294% at 100 micrograms/ml. Apoptosis was detected by DNA fragmentation and Annexin assay in HUVECs and by TUNEL staining in RA. Incubation of HUVECs and RA with oxLDL, but not nLDL, dose and time dependently induced apoptosis with only a minimal effect on necrosis. nLp(a) elicited a small but significant effect on apoptosis, whereas oxLp(a) induced apoptosis more potently than oxLDL in HUVECs and RA and caused necrotic cell death in HUVECs. Induction of apoptosis by oxLDL and oxLp(a) in RA was enhanced by the superoxide dismutase (SOD) inhibitor, diethyl-dithio-carbamate, and was blunted by SOD and catalase in HUVECs and RA, suggesting that O2- formation was involved. The concentration of lysophosphatidylcholine, a lipoprotein oxidation product and stimulus for O2- formation, was significantly enhanced by factor 5 in oxLDL and by factor 7 in oxLp(a) compared with native lipoproteins. CONCLUSION: Atherogenic lipoproteins stimulate O2- formation and induction of apoptosis in HUVECs and RA, and may thereby influence the pathogenesis of atherosclerosis.  (+info)