Increased poly(ADP-ribosyl)ation of nuclear proteins in Alzheimer's disease. (25/22885)

Experimental studies indicate that overactivation of the DNA repair protein poly(ADP-ribose) polymerase (PARP) in response to oxidative damage to DNA can cause cell death due to depletion of NAD+. Oxidative damage to DNA and other macromolecules has been reported to be increased in the brains of patients with Alzheimer's disease. In the present study we sought evidence of PARP activation in Alzheimer's disease by immunostaining sections of frontal and temporal lobe from autopsy material of 20 patients and 10 controls, both for PARP itself and for its end-product, poly(ADP-ribose). All of the brains had previously been subjected to detailed neuropathological examination to confirm the diagnosis of Alzheimer's disease or, in the controls, to exclude Alzheimer's disease-type pathology. Double immunolabelling for poly(ADP-ribose) and microtubule-associated protein 2 (MAP2), glial fibrillary-acidic protein (GFAP), CD68, A beta-protein or tau was used to assess the identity of the cells with poly(ADP-ribose) accumulation and their relationship to plaques and neurofibrillary tangles. Both PARP- and poly(ADP-ribose)-immunolabelled cells were detected in a much higher proportion of Alzheimer's disease (20 out of 20) brains than of control brains (5 out of 10) (P = 0.0018). Double-immunolabelling for poly(ADP-ribose) and markers of neuronal, astrocytic and microglial differentiation (MAP2, GFAP and CD68, respectively) showed many of the cells containing poly(ADP-ribose) to be neurons. Most of these were small pyramidal neurons in cortical laminae 3 and 5. A few of the cells containing poly(ADP-ribose) were astrocytes. No poly(ADP-ribose) accumulation was detected in microglia. Double-immunolabelling for poly(ADP-ribose) and tau or A beta-protein indicated that the cells with accumulation of poly(ADP-ribose) did not contain tangles and relatively few occurred within plaques. Our findings indicate that there is enhanced PARP activity in Alzheimer's disease and suggest that pharmacological interventions aimed at inhibiting PARP may have a role in slowing the progression of the disease.  (+info)

The involvement of cysteine proteases and protease inhibitor genes in the regulation of programmed cell death in plants. (26/22885)

Programmed cell death (PCD) is a process by which cells in many organisms die. The basic morphological and biochemical features of PCD are conserved between the animal and plant kingdoms. Cysteine proteases have emerged as key enzymes in the regulation of animal PCD. Here, we show that in soybean cells, PCD-activating oxidative stress induced a set of cysteine proteases. The activation of one or more of the cysteine proteases was instrumental in the PCD of soybean cells. Inhibition of the cysteine proteases by ectopic expression of cystatin, an endogenous cysteine protease inhibitor gene, inhibited induced cysteine protease activity and blocked PCD triggered either by an avirulent strain of Pseudomonas syringae pv glycinea or directly by oxidative stress. Similar expression of serine protease inhibitors was ineffective. A glutathione S-transferase-cystatin fusion protein was used to purify and characterize the induced proteases. Taken together, our results suggest that plant PCD can be regulated by activity poised between the cysteine proteases and the cysteine protease inhibitors. We also propose a new role for proteinase inhibitor genes as modulators of PCD in plants.  (+info)

Upregulation of superoxide dismutase and nitric oxide synthase mediates the apoptosis-suppressive effects of shear stress on endothelial cells. (27/22885)

Physiological levels of laminar shear stress completely abrogate apoptosis of human endothelial cells in response to a variety of stimuli and might therefore importantly contribute to endothelial integrity. We show here that the apoptosis-suppressive effects of shear stress are mediated by upregulation of Cu/Zn SOD and NO synthase. Shear stress-mediated inhibition of endothelial cell apoptosis in response to exogenous oxygen radicals, oxidized LDL, and tumor necrosis factor-alpha was associated with complete inhibition of caspase-3-like activity, the central effector arm executing the apoptotic cell death program in endothelial cells. Shear stress-dependent upregulation of Cu/Zn SOD and NO synthase blocks activation of the caspase cascade in response to apoptosis-inducing stimuli. These findings establish the upregulation of Cu/Zn SOD and NO synthase by shear stress as a central protective cellular mechanism to preserve the integrity of the endothelium after proapoptotic stimulation.  (+info)

SodA and manganese are essential for resistance to oxidative stress in growing and sporulating cells of Bacillus subtilis. (28/22885)

We constructed a sodA-disrupted mutant of Bacillus subtilis 168, BK1, by homologous recombination. The mutant was not able to grow in minimal medium without Mn(II). The spore-forming ability of strain BK1 was significantly lower in Mn(II)-depleted medium than that of the wild-type strain. These deleterious effects caused by the sodA mutation were reversed when an excess of Mn(II) was used to supplement the medium. Moreover, the growth inhibition by superoxide generators in strain BK1 and its parent strain was also reversed by the supplementation with excess Mn(II). We therefore estimated the Mn-dependent superoxide-scavenging activity in BK1 cells. Whereas BK1 cells have no detectable superoxide dismutase (Sod) on native gel, the superoxide-scavenging activity in crude extracts of BK1 cells grown in Mn(II)-supplemented LB medium (10 g of tryptone, 5 g of yeast extract, and 5 g of NaCl per liter) was significantly detected by the modified Sod assay method without using EDTA. The results obtained suggest that Mn, as a free ion or a complex with some cellular component, can catalyze the elimination of superoxide and that both SodA and Mn(II) are involved not only in the superoxide resistance of vegetative cells but also in sporulation.  (+info)

Health aspects of partially defatted flaxseed, including effects on serum lipids, oxidative measures, and ex vivo androgen and progestin activity: a controlled crossover trial. (29/22885)

BACKGROUND: Currently there is considerable interest in the potential health benefits of oil seeds, such as soy and flaxseed, especially in relation to cardiovascular disease and cancer. OBJECTIVE: We therefore evaluated health aspects of partially defatted flaxseed in relation to serum lipids, indicators of oxidative stress, and ex vivo sex hormone activities. DESIGN: Twenty-nine hyperlipidemic subjects (22 men and 7 postmenopausal women) completed two 3-wk treatment periods in a randomized, crossover trial. Subjects were given muffins that contributed approximately 20 g fiber/d from either flaxseed (approximately 50 g partially defatted flaxseed/d) or wheat bran (control) while they consumed self-selected National Cholesterol Education Program Step II diets. Both muffins had similar macronutrient profiles. Treatment phases were separated by > or = 2 wk. RESULTS: Partially defatted flaxseed reduced total cholesterol (4.6+/-1.2%; P = 0.001), LDL cholesterol (7.6+/-1.8%; P < 0.001), apolipoprotein B (5.4+/-1.4%; P = 0.001), and apolipoprotein A-I (5.8+/-1.9%; P = 0.005), but had no effect on serum lipoprotein ratios at week 3 compared with the control. There were no significant effects on serum HDL cholesterol, serum protein carbonyl content, or ex vivo androgen or progestin activity after either treatment. Unexpectedly, serum protein thiol groups were significantly lower (10.8+/-3.6%; P = 0.007) at week 3 after the flaxseed treatment than after the control, suggesting increased oxidation. CONCLUSIONS: These data indicate that partially defatted flaxseed is effective in lowering LDL cholesterol. No effects on lipoprotein ratios, ex vivo serum androgen or progestin activity, or protein carbonyl content were observed. The significance of increased oxidation of protein thiol groups with flaxseed consumption requires further investigation.  (+info)

Mitochondrial involvement in Alzheimer's disease. (30/22885)

The causes of most neurodegenerative diseases, including sporadic Alzheimer's disease (AD), remain enigmatic. There is, however, increasing evidence implicating mitochondrial dysfunction resulting from deafferentiation of disconnected neural circuits in the pathogenesis of energy deficit in AD. The patterns of reduced expression of both mitochondrial DNA (mtDNA) and nuclear DNA (nDNA) encoded genes is consistent with a physiological down-regulation of the mitochondrial respiratory chain in response to reduced neuronal activity. On the other hand, the role(s) of somatic cell or maternally inherited mtDNA mutations in the pathogenesis of mitochondrial dysfunction in AD are still controversial.  (+info)

Mitochondria in organismal aging and degeneration. (31/22885)

Several lines of experimentation support the view that the genetic, biochemical and bioenergetic functions of somatic mitochondria deteriorate during normal aging. Deletion mutations of the mitochondrial genome accumulate exponentially with age in nerve and muscle tissue of humans and multiple other species. In muscle, a tissue that undergoes age-related fiber loss and atrophy in humans, there is an exponential rise in the number of cytochrome-oxidase-deficient fibers, which is first detectable in the fourth decile of age. Most biochemical studies of animal mitochondrial activity indicate a decline in electron transport activity with age, as well as decreased bioenergetic capacity with age, as measured by mitochondrial membrane potential. Mitochondrial mutations may be both the result of mitochondrial oxidative stress, and cells bearing pure populations of pathogenic mitochondrial mutations are sensitized to oxidant stress. Oxidant stress to mitochondria is known to induce the mitochondrial permeability transition, which has recently been implicated in the release of cytochrome c and the initiation of apoptosis. Thus several lines of evidence support a contribution of mitochondrial dysfunction to the phenotypic changes associated with aging.  (+info)

Apoptosis in neurodegenerative diseases: the role of mitochondria. (32/22885)

Nerve cell death is the central feature of the human neurodegenerative diseases. It has long been thought that nerve cell death in these disorders occurs by way of necrosis, a process characterized by massive transmembrane ion currents, compromise of mitochondrial ATP production, and the formation of high levels of reactive oxygen species combining to induce rapid disruption of organelles, cell swelling, and plasma membrane rupture with a secondary inflammatory response. Nuclear DNA is relatively preserved. Recent evidence now indicates that the process of apoptosis rather than necrosis primarily contributes to nerve cell death in neurodegeneration. This has opened up new avenues for understanding the pathogenesis of neurodegeneration and may lead to new and more effective therapeutic approaches to these diseases.  (+info)