Comparative in vitro efficacy of different platelet glycoprotein IIb/IIIa antagonists on platelet-mediated clot strength induced by tissue factor with use of thromboelastography: differentiation among glycoprotein IIb/IIIa antagonists. (73/1402)

In the present study, the in vitro efficacy of different platelet glycoprotein IIb/IIIa (GPIIb/IIIa) antagonists on platelet-fibrin-mediated clot strength under shear was compared with the antiaggregatory efficacy by using tissue factor (TF) thromboelastography (TEG). The ability of platelets to augment the elastic properties of blood clots under shear conditions was measured by computerized TEG under conditions of maximal platelet activation accelerated by recombinant TF. Under these conditions, platelets significantly enhance clot strength 8-fold (relative to platelet-free fibrin clots). This effect was inhibited to a different extent by various platelet GPIIb/IIIa receptor antagonists; this inhibition appears to be dependent on the transmission of platelet contractile force to fibrin via the GPIIb/IIIa receptors. The GPIIb/IIIa antagonists with high binding affinity for resting and activated platelets and slow platelet dissociation rates (class I) but not those with fast platelet dissociation rates (class II) demonstrated potent and comparable inhibition of platelet aggregation and TF-TEG clot strength. Platelet GPIIb/IIIa antagonists of class I, such as XV459 (free-acid form of roxifiban), DMP802, XV454, and c7E3, demonstrated comparable inhibitory dose responses of TF-TEG clot strength and platelet aggregation, with an IC(50) of 50 to 70 nmol/L. In contrast, platelet GPIIb/IIIa antagonists from class II, with comparable antiaggregatory efficacy, such as DMP728, YZ202 (free-acid form of orbofiban), YZ211 (free-acid form of sibrafiban), YZ751, and other antagonists, have a much lower efficacy in altering the strength of TF-mediated clot formation (IC(50) >1.0 micromol/L). These data suggest differential efficacy among different GPIIb/IIIa antagonists in inhibiting platelet-fibrin clot retraction despite of equivalent antiaggregatory potency.  (+info)

Characterization and functional significance of calcium transients in the 2-cell mouse embryo induced by an autocrine growth factor. (74/1402)

Growth of preimplantation embryos is influenced by autocrine trophic factors that need to act by the 2-cell stage, but their mode of action is not yet described. This report shows that late zygote and 2-cell stage mouse embryos responded to embryo-derived platelet-activating factor (PAF) with transient increases in intracellular calcium concentration ([Ca(2+)](i)). [Ca(2+)](i) transients were single global events and were specifically induced by embryo-derived PAF. They were blocked by inhibition of phospholipase C (U 73122) and an inositol trisphosphate (IP(3)) receptor antagonist (xestospongin C), indicating the release of calcium from IP(3)-sensitive intracellular stores. Transients were also inhibited by the absence of calcium from extracellular medium and partially inhibited by treatment with dihydropyridine (nifedipine, 10 micrometer), but not pimozide (an inhibitor of an embryonic T-type calcium channel). (+/-)BAY K8644 (an L-type channel agonist) induced [Ca(2+)](i) transients, yet these were completely inhibited by nifedipine (10 micrometer). The complete inhibition of BAY K8644, but only partial inhibition of PAF by nifedipine shows that L-type channels were only partly responsible for the calcium influx. Depolarization of 2-cell embryos by 50 mm K(+) did not inhibit PAF-induced calcium transients, showing that the influx channels were not voltage-dependent. Depletion of intracellular calcium stores by thapsigargin revealed the presence of store-operated channels. The interdependent requirement for IP(3)-sensitive internal calcium stores and extracellular calcium in the generation of PAF-induced transients may be explained by a requirement for capacitative calcium entry via store-operated channels. A functionally important role for the PAF-induced transients is supported by the observation that inhibition of [Ca(2+)](i) transients by a PAF-antagonist (WEB 2086) or an intracellular calcium chelator (1,2-bis(2-aminophenoxy)-ethane-N,N,N',N'-tetraacetic acid tetrakis-acetoxymethyl ester; BAPTA-AM) caused marked inhibition of early embryo development. Growth inhibition by BAPTA-AM was relieved by addition of exogenous PAF.  (+info)

MICs of oxazolidinones for Rhodococcus equi strains isolated from humans and animals. (75/1402)

Eperezolid and linezolid are representatives of a new class of orally active, synthetic antimicrobial agents. The in vitro activity values (MICs) of linezolid, eperezolid, and comparator antibiotics against 102 strains of Rhodococcus equi isolated from humans and animals were determined. Linezolid was more active than eperezolid against the strains tested; premafloxacin was the most active comparator antibiotic.  (+info)

Myeloid cell leukemia 1 is phosphorylated through two distinct pathways, one associated with extracellular signal-regulated kinase activation and the other with G2/M accumulation or protein phosphatase 1/2A inhibition. (76/1402)

Protein kinase C activators and microtubule-damaging drugs stimulate BCL2 phosphorylation, which has been associated with either enhancement or inhibition of cell viability. In a Burkitt lymphoma cell line, both types of agents likewise stimulated phosphorylation of myeloid cell leukemia 1 (MCL1), another viability-promoting BCL2 family member. However, while MCL1 phosphorylation induced by the protein kinase C activator, 12-O-tetradecanoylphorbol-13-acetate (TPA), did not affect its electrophoretic mobility, microtubule-damaging agents, such as taxol, induced MCL1 phosphorylation associated with a band shift to decreased mobility. Inhibitors of extracellular signal-regulated kinase (ERK) activation blocked TPA-induced MCL1 phosphorylation but not the taxol-induced band shift. TPA-induced MCL1 phosphorylation occurred rapidly and was not associated with decreased viability, while the taxol-induced band shift occurred upon extended exposure as cells accumulated in G(2)/M followed by cell death. Protein phosphatase 1/2A inhibitors also induced the MCL1 band shift/phosphorylation. Thus, MCL1 undergoes two distinct types of phosphorylation: (i) TPA-induced, ERK-associated phosphorylation, which does not alter the electrophoretic mobility of MCL1, and (ii) ERK-independent phosphorylation, which results in an MCL1 band shift and is induced by events in G(2)/M or protein phosphatase 1/2A inhibitors.  (+info)

Selective restoration of calcium coupling to muscarinic M(3) receptors in contractile cultured airway myocytes. (77/1402)

We previously demonstrated that after several days of serum deprivation about one-sixth of confluent cultured canine tracheal myocytes acquire an elongated, structurally and functionally contractile phenotype. These myocytes demonstrated significant shortening on ACh exposure. To evaluate the mechanism by which these myocytes acquire responsiveness to ACh, we assessed receptor-Ca(2+) coupling using fura 2-AM fluorescence imaging and muscarinic receptor expression using Western analysis. Cells were grown to confluence in 10% fetal bovine serum and then maintained for 7-13 days in serum-free medium. A fraction of serum-deprived cells exhibited reproducible intracellular Ca(2+) mobilization in response to ACh that was uniformly absent from airway myocytes before serum deprivation. The Ca(2+) response to 10(-4) M ACh was ablated by inositol 1,4,5-trisphosphate (IP(3)) receptor blockade using 10(-6) M xestospongin C but not by removal of extracellular Ca(2+). Also, 10(-7) M atropine or 10(-7) M 4-diphenylacetoxy-N-methylpiperidine completely blocked the response to ACh, but intracellular Ca(2+) mobilization was not ablated by 10(-6) M pirenzepine or 10(-6) M methoctramine. In contrast, 10(-5) M bradykinin (BK) was without effect in these ACh-responsive myocytes. Interestingly, myocytes that did not respond to ACh demonstrated robust increases in intracellular Ca(2+) on exposure to 10(-5) M BK that were blocked by removal of extracellular Ca(2+) and were only modestly affected by IP(3) receptor blockade. Serum deprivation increased the abundance of M(3) receptor protein and of BK(2) receptor protein by two- to threefold in whole cell lysates within 2 days of serum deprivation, whereas M(2) receptor protein fell by >75%. An increase in M(3) receptor abundance and restoration of M(3) receptor-mediated Ca(2+) mobilization occur concomitant with reacquisition of a contractile phenotype during prolonged serum deprivation. These data demonstrate plasticity in muscarinic surface receptor expression and function in a subpopulation of airway myocytes that show mutually exclusive physiological and pharmacological diversity with other cells in the same culture.  (+info)

Suppression of polypogenesis in a new mouse strain with a truncated Apc(Delta474) by a novel COX-2 inhibitor, JTE-522. (78/1402)

Mutations of the adenomatous polyposis coli gene (Apc) have been implicated in the occurrence of sporadic colon cancer. Various Apc knockout strains of mice have been created to better understand the function of this gene. In the present study, using gene targeting, we disrupted the mouse Apc gene at the end of exon 10 to compare its effect with the effects of other types of Apc gene disruption, all of which are on exon 15. The mice expressed a mutant form of mRNA that encoded 474 amino acids instead of 2845 amino acids due to exon duplication. In addition, these Apc(Delta474) knockout mice developed intestinal and mammary tumors. Since the most severe cases of familial adenomatous polyposis are associated with mutations on exon 15, our mutation at exon 10 was expected to result in a mild phenotype. However, the number of polyps that our mice developed was similar to that of other Apc knockout mice such as Apc(Min) and Apc(1309) mice. Cyclooxygenase-2 (COX-2) has been implicated in colorectal carcinoma. Apc(Delta474) mice treated with JTE-522, a novel COX-2-selective inhibitor, showed a significantly reduced number of polyps. These results suggest that COX-2 plays an important role in polypogenesis and COX-2-selective inhibitors can be used as new preventive therapeutics against colorectal tumors.  (+info)

Characterization of the period of sensitivity of fetal male sexual development to vinclozolin. (79/1402)

Vinclozolin is a fungicide whose metabolites are androgen receptor (AR) antagonists. Previous work in our laboratory showed that perinatal administration of vinclozolin to rats results in malformations of the external genitalia, permanent nipples, reduced anogenital distance (AGD), and reduced seminal vesicle, ventral prostate, and epididymal weights. The objectives of this study were to determine the most sensitive period of fetal development to antiandrogenic effects of vinclozolin and to identify a dosing regime that would induce malformations in all of the male offspring. Pregnant rats were dosed with 400 mg vinclozolin/kg/day on either GD 12-13, GD 14-15, GD 16-17, GD 18-19, or GD 20-21, or with corn oil (2.5 ml/kg) from GD 12 through GD 21 (Experiment 1). All 2-day periods in which significant effects were produced were included in an extended dosing period, GD 14 through GD 19, in which pregnant rats were dosed with 200 or 400 mg vinclozolin/kg (Experiment 2). In Experiment 1, significant effects of vinclozolin were observed in rats dosed on gestation days (GD) 14-15, GD 16-17, and GD 18-19, while the most significant effects were observed in rats treated on GD 16-17. These effects include reduced AGD; presence of areolas, nipples, and malformations of the phallus; and reduced levator ani/bulbocavernosus weight. In contrast, ventral prostate weight was reduced only in the GD 18-19 group. The expanded dosing regime (Experiment 2) increased the percentage of male offspring with genital malformations (> 92%), and retained nipples (100%), further reduced the weight of the ventral prostate, and reduced the weight of the seminal vesicles. In addition, malformations were more severe and included vaginal pouch and ectopic/undescended testes. The latter was induced only in the 400 mg/kg group. These data indicate that the reproductive system of the fetal male rat is most sensitive to antiandrogenic effects of vinclozolin on GD 16 and 17, although effects are more severe and 100 % of male offspring are affected with administration of vinclozolin from GD 14 through GD 19.  (+info)

Ca2+ signalling in rat vascular smooth muscle cells: a role for protein kinase C at physiological vasoconstrictor concentrations of vasopressin. (80/1402)

Physiological vasoconstrictor concentrations of Arg8-vasopressin (AVP, 10-100 pM) stimulate oscillations (spikes) in cytosolic free Ca2+ concentration ([Ca2+]i) in A7r5 rat vascular smooth muscle cells. These Ca2+ spikes are dependent on L-type voltage-sensitive Ca2+ channels and increase in frequency with increasing AVP concentration. The signal transduction pathway responsible for this effect was examined in fura-2-loaded A7r5 cell monolayers. The serine/threonine phosphatase inhibitor calyculin A (5 nM) sensitized A7r5 cells to AVP, resulting in the stimulation of Ca2+ spiking by 1-10 pM AVP. Calyculin A alone did not stimulate Ca2+ spiking. The protein kinase C (PKC) activator 4beta-phorbol 12-myristate 13-acetate (PMA, 100 pM to 200 nM), also stimulated Ca2+ spiking and this effect was additive with a submaximal concentration of AVP (50 pM). The PKC inhibitors Ro-31-8220 (1 microM) and calphostin C (250 nM) completely blocked the stimulation of Ca2+ spiking by either PMA or AVP. alpha, beta, gamma, delta, epsilon, zeta and &lamdda; isoforms of PKC were detected in A7r5 cells by Western blot analysis. Time-dependent redistribution of PKC-alpha, -delta and -epsilon isoforms between the membrane and cytosolic fractions occurred in response to 100 pM AVP. Pretreatment for 24 h with 1 microM PMA downregulated expression of PKC-alpha and -delta, but not PKC-epsilon, and prevented the Ca2+-spiking responses to either 1 nM PMA or 100 pM AVP. Neither the release of intracellular Ca2+ by 1 microM AVP nor the increase in [Ca2+]i in response to elevated extracellular [K+] was prevented by the PMA pretreatment. We conclude that PKC activation is a necessary step in the signal transduction pathway linking low concentrations of AVP to Ca2+ spiking in A7r5 cells.  (+info)