Efficacy of linezolid in experimental otitis media. (57/1402)

Therapy for otitis media (OM) due to resistant Streptococcus pneumoniae (MIC of penicillin, >/=2.0 microgram/ml) is challenging. Linezolid, an oxazolidinone, represent a new class of antimicrobial agents with excellent in vitro activity against penicillin-resistant S. pneumoniae; however, in vitro activity against nontypeable Haemophilus influenzae (NTHI) is limited. We evaluated its efficacy against experimental acute OM due to a multidrug-resistant S. pneumoniae isolate and two isolates of NTHI. The chinchilla model was utilized to evaluate the efficacy of linezolid against experimental infection due to S. pneumoniae or NTHI. Serum and middle ear antibiotic concentrations were determined, and sterilization of experimental OM was evaluated. Chinchillas were inoculated directly with S. pneumoniae into the superior bulla. Twenty-four hours after inoculation, all animals had positive middle ear and nasopharyngeal cultures. Animals were given linezolid at 25 mg/kg/dose twice a day (b.i.d.) by orogastric feeding tube or amoxicillin at 40 mg/kg/dose b.i.d. intramuscularly for 5 days. By day 5, all animals in the linezolid group had sterile middle ear cultures and eradication of S. pneumoniae from the nasopharynx. In the amoxicillin group, all nine animals remained middle ear and nasopharynx positive (P < 0.01). In animals inoculated with NTHI, 25 and 37.5 mg/kg b.i.d. failed to sterilize middle ear infection or eradicate colonization. Mean levels in middle ear fluid measured during experimental infection were 12.8 microgram/ml at 2 to 6 h and 4. 1 mirogram/ml at 16 to 17 h after orogastric dosing at 25 mg/kg. Linezolid achieved a high concentration in the middle ear during experimental OM. Linezolid eradicated multidrug-resistant S. pneumoniae from the middle ear and nasopharynx. Experimental infection and nasopharyngeal colonization due to NTHI persisted despite achievement of concentrations in the middle ear that were above the MIC (for NTHI).  (+info)

Hamster pancreatic beta cell lines with altered sensitivity towards apoptotic signalling by phosphatase inhibitors. (58/1402)

Specific inhibitors of serine/threonine phosphatases like okadaic acid can induce apoptotic cell death in the pancreatic beta cell line HIT. Cultivation in stepwise increased concentrations of okadaic acid enabled the isolation of HIT100R cells which proliferate at 100 nM okadaic acid (8 - 10 times the initially lethal concentration). These two cell lines were used to characterize the events triggered by okadaic acid that led to apoptosis. Biochemical markers, e.g. cytochrome c release from mitochondria and increase of caspase-3-like activity, revealed that induction of apoptosis by 100 nM okadaic acid in parental HIT cells started with the release of cytochrome c. In HIT100R cells 500 nM okadaic acid were necessary to induce alterations comparable to those observed with 100 nM okadaic acid in non-resistant HIT cells. In contrast to okadaic acid, the potency of the structurally different phosphatase inhibitor cantharidic acid to induce cytochrome c release, increase of caspase-3-like activity and DNA fragmentation was comparable in HIT and HIT100R cells. Thus, no cross-resistance between these phosphatase inhibitors seemed to exist. Phosphatase activity in extracts from HIT and HIT100R cells did not differ in its total amount or in its sensitivity for okadaic acid. Since higher concentrations of okadaic acid were needed to induce apoptosis in HIT100R cells, a compromised intracellular accumulation of the toxin appeared likely. Functional and structural analysis revealed that this was achieved by the development of the multidrug resistance phenotype in HIT100R cells. The underlying mechanism appeared to be the enhanced expression of the pgp1 but not the pgp2 gene.  (+info)

Protein phosphatase-protein kinase interplay modulates alpha 1b-adrenoceptor phosphorylation: effects of okadaic acid. (59/1402)

In the present work we studied the effect of protein phosphatase inhibitors on the phosphorylation state and function of alpha(1b)-adrenoceptors. Okadaic acid increased receptor phosphorylation in a time- and concentration-dependent fashion (maximum at 30 min, EC(50) of 30 nM). Other inhibitors of protein phosphatases (calyculin A, tautomycin and cypermethrin) mimicked this effect. Staurosporine and Ro 31-8220, inhibitors of protein kinase C, blocked the effect of okadaic acid on receptor phosphorylation. Neither genistein nor wortmannin altered the effect of okadaic acid. The intense adrenoceptor phosphorylation induced by okadaic acid altered the adrenoceptor-G protein coupling, as evidenced by a small decreased noradrenaline-stimulated [(35)S]GTPgammaS binding. Okadaic acid did not alter the noradrenaline-stimulated increases in intracellular calcium or the production of inositol trisphosphate. Our data indicate that inhibition of protein phosphatases increases the phosphorylation state of alpha(1b)-adrenoceptors; this effect seems to involve protein kinase C. In spite of inducing an intense receptor phosphorylation, okadaic acid alters alpha(1b)-adrenergic actions to a much lesser extent than the direct activation of protein kinase C by phorbol myristate acetate.  (+info)

Non-prostanoid prostacyclin mimetics as neuronal stimulants in the rat: comparison of vagus nerve and NANC innervation of the colon. (60/1402)

The spontaneous activity of the rat isolated colon is suppressed by prostacyclin analogues such as cicaprost (IC(50)=4.0 nM). Activation of prostanoid IP(1)-receptors located on NANC inhibitory neurones is involved. However, several non-prostanoids, which show medium to high IP(1) agonist potency on platelet and vascular preparations, exhibit very weak inhibitory activity on the colon. The aim of the study was to investigate this discrepancy. Firstly, we have demonstrated the very high depolarizing potency of cicaprost on the rat isolated vagus nerve (EC(50)=0.23 nM). Iloprost, taprostene and carbacyclin were 7.9, 66, and 81 fold less potent than cicaprost, indicating the presence of IP(1) as opposed to IP(2)-receptors. Three non-prostanoid prostacyclin mimetics, BMY 45778, BMY 42393 and ONO-1301, although much less potent than cicaprost (195, 990 and 1660 fold respectively), behaved as full agonists on the vagus nerve. On re-investigating the rat colon, we found that BMY 45778 (0.1 - 3 microM), BMY 42393 (3 microM) and ONO-1301 (3 microM) behaved as specific IP(1) partial agonists, but their actions required 30 - 60 min to reach steady-state and only slowly reversed on washing. This profile contrasted sharply with the rapid and readily reversible contractions elicited by a related non-prostanoid ONO-AP-324, which is an EP(3)-receptor agonist. The full versus partial agonism of the non-prostanoid prostacyclin mimetics may be explained by the markedly different IP(1) agonist sensitivities of the two rat neuronal preparations. However, the slow kinetics of the non-prostanoids on the NANC system of the colon remain unexplained, and must be taken into account when characterizing neuronal IP-receptors.  (+info)

Vibrio cholerae VibF is required for vibriobactin synthesis and is a member of the family of nonribosomal peptide synthetases. (61/1402)

A 7.5-kbp fragment of chromosomal DNA downstream of the Vibrio cholerae vibriobactin outer membrane receptor, viuA, and the vibriobactin utilization gene, viuB, was recovered from a Sau3A lambda library of O395 chromosomal DNA. By analogy with the genetic organization of the Escherichia coli enterobactin gene cluster, in which the enterobactin biosynthetic and transport genes lie adjacent to the enterobactin outer membrane receptor, fepA, and the utilization gene, fes, the cloned DNA was examined for the ability to restore siderophore synthesis to E. coli ent mutants. Cross-feeding studies demonstrated that an E. coli entF mutant complemented with the cloned DNA regained the ability to synthesize enterobactin and to grow in low-iron medium. Sequence analysis of the cloned chromosomal DNA revealed an open reading frame downstream of viuB which encoded a deduced protein of greater than 2,158 amino acids, homologous to Yersinia sp. HMWP2, Vibrio anguillarum AngR, and E. coli EntF. A mutant with an in-frame deletion of this gene, named vibF, was created with classical V. cholerae strain O395 by in vivo marker exchange. In cross-feeding studies, this mutant was unable to synthesize ferric vibriobactin but was able to utilize exogenous siderophore. Complementation of the mutant with a cloned vibF fragment restored vibriobactin synthesis to normal. The expression of the vibF promoter was found to be negatively regulated by iron at the transcriptional level, under the control of the V. cholerae fur gene. Expression of vibF was not autoregulatory and neither affected nor was affected by the expression of irgA or viuA. The promoter of vibF was located by primer extension and was found to contain a dyad symmetric nucleotide sequence highly homologous to the E. coli Fur binding consensus sequence. A footprint of purified V. cholerae Fur on the vibF promoter, overlapping the Fur binding consensus sequence, was observed using DNase I footprinting. The protein product of vibF is homologous to the multifunctional nonribosomal protein synthetases and is necessary for the biosynthesis of vibriobactin.  (+info)

Transient translocation and activation of protein phosphatase 2A during mast cell secretion. (62/1402)

Okadaic acid inhibits secretion from mast cells, suggesting a regulatory role for protein Ser/Thr phosphatases type I (PP1) and/or 2A (PP2A) in the secretory process. In unstimulated RBL-2H3 cells, okadaic acid pretreatment inhibited PP2A activity in both cytosol and membrane fractions, but inhibition of secretion correlated with inhibition of membrane-bound rather than cytosolic PP2A activity. Okadaic acid had very little effect on PP1 activity. Stimulation of RBL-2H3 cells by antigen led to the activity and amount of PP2A in the membrane fraction increasing nearly 2-fold. In contrast, there was little change in the activity or distribution of PP1. Importantly, the translocation of PP2A was transient, coinciding with or marginally preceding the peak rate of secretion, suggesting a link between PP2A translocation, activity, and secretion. Phorbol 12-myristate 13-acetate plus the calcium ionophore A23187 induced a slower, prolonged rate of secretion that coincided with a similarly protracted translocation of PP2A to the membrane fraction. PP2A translocation is not the only event required for secretion as translocation was also induced by phorbol 12-myristate 13-acetate, without resulting in secretion. These results indicate that increased protein dephosphorylation in the membrane fraction mediated by PP2A is required for mast cell secretion. To our knowledge, this is the first demonstration of a signal-mediated, rapid, transient translocation and activation of PP2A in membranes in any system.  (+info)

Requirement of the inositol trisphosphate receptor for activation of store-operated Ca2+ channels. (63/1402)

The coupling mechanism between endoplasmic reticulum (ER) calcium ion (Ca2+) stores and plasma membrane (PM) store-operated channels (SOCs) is crucial to Ca2+ signaling but has eluded detection. SOCs may be functionally related to the TRP family of receptor-operated channels. Direct comparison of endogenous SOCs with stably expressed TRP3 channels in human embryonic kidney (HEK293) cells revealed that TRP3 channels differ in being store independent. However, condensed cortical F-actin prevented activation of both SOC and TRP3 channels, which suggests that ER-PM interactions underlie coupling of both channels. A cell-permeant inhibitor of inositol trisphosphate receptor (InsP3R) function, 2-aminoethoxydiphenyl borate, prevented both receptor-induced TRP3 activation and store-induced SOC activation. It is concluded that InsP3Rs mediate both SOC and TRP channel opening and that the InsP3R is essential for maintaining coupling between store emptying and physiological activation of SOCs.  (+info)

A role for the actin cytoskeleton in the initiation and maintenance of store-mediated calcium entry in human platelets. Evidence for conformational coupling. (64/1402)

The nature of the mechanism underlying store-mediated Ca(2+) entry has been investigated in human platelets through a combination of cytoskeletal modifications. Inhibition of actin polymerization by cytochalasin D or latrunculin A had a biphasic time-dependent effect on Ca(2+) entry, showing an initial potentiation followed by inhibition of Ca(2+) entry. Moreover, addition of these agents after induction of store-mediated Ca(2+) entry inhibited the Ca(2+) influx mechanism. Jasplakinolide, which reorganizes actin filaments into a tight cortical layer adjacent to the plasma membrane, prevented activation of store-mediated Ca(2+) entry but did not modify this process after its activation. In addition, jasplakinolide prevented cytochalasin D-induced inhibition of store-mediated Ca(2+) entry. Calyculin A, an inhibitor of protein serine/threonine phosphatases 1 and 2 which activates translocation of existing F-actin to the cell periphery without inducing actin polymerization, also prevented activation of store-mediated Ca(2+) entry. Finally, inhibition of vesicular transport with brefeldin A inhibited activation of store-mediated Ca(2+) entry but did not alter this mechanism once initiated. These data suggest that store-mediated Ca(2+) entry in platelets may be mediated by a reversible trafficking and coupling of the endoplasmic reticulum with the plasma membrane, which shows close parallels to the events mediating secretion.  (+info)