Ouabain binding to renal tubules of the rabbit. (73/3013)

It is well known that ouabain, a specific inhibitor of Na-K ATPase-dependent transport, interferes with renal tubular salt reabsorption. In this study, we employed radiochemical methods to measure the kinetics of [3H]ouabain binding to slices of rabbit renal medulla and high resolution quantitative autoradiography to determine the location and number of cellular binding sites. The kinetics obeyed a simple bimolecular reaction with an association constant of 2.86 +/- 0.63 SD x 10(3) M-1 min-1 and a dissociation constant of 1.46 x 10(-3) min-1, yielding an equilibrium binding constant of 0.51 x 10(-6) M. Binding was highly dependent upon temperature. At a concentration of 10(-6) M, the rate of accumulation between 25 degrees C and 35 degrees C exhibited a Q10 of 1.8. At 0 degree C the rate of ouabain dissociation was negligible. The specificity of binding was demonstrated with increasing potassium concentrations. At a concentration of 1 microM, 6 mM, and 50 mM K+ produced a 2.5- and 7-fold decrease, respectively, in the rate of ouabain accumulation observed at zero K+. Binding was completely inhibited by 1 mM strophanthin K. The major site of ouabain binding was the thick ascending limb; little or no binding was observed in thin limbs and collecting ducts. Moreover, binding was confined to the basolateral membranes. From autoradiographic grain density measurements, it was estimated that each cell contains over 4 x 10(6) ouabain binding sites or Na-K ATPase molecules. These results taken together with physiological and biochemical observations suggest that Na-K ATPase plays a key role in salt reabsorption by this segment.  (+info)

Factors affecting membrane permeability and ionic homeostasis in the cold-submerged frog. (74/3013)

Frogs (Rana temporaria) were submerged at 3 degrees C in either normoxic (P(O2)=155 mmHg, P(O2)=20 kPa) or hypoxic (P(O2)=60 mmHg; P(O2)=8 kPa) water for up to 16 weeks, and denied air access, to mimic the conditions of an ice-covered pond during the winter. The activity of the skeletal muscle Na(+)/K(+) pump over the first 2 months of hibernation, measured by ouabain-inhibitable (22)Na(+) efflux, was reduced by 30 % during normoxia and by up to 50 % during hypoxia. The reduction in Na(+)/K(+) pump activity was accompanied by reductions in passive (22)Na(+) influx and (86)Rb(+) efflux (effectively K(+) efflux) across the sarcolemma. This may be due to a decreased Na(+) permeability of the sarcolemma and a 75 % reduction in K(+) leak mediated by ATP-sensitive K(+) channels ('K(ATP)' channels). The lowered rates of (22)Na(+) and (86)Rb(+) flux are coincident with lowered transmembrane ion gradients for [Na(+)] and [K(+)], which may also lower Na(+)/K(+) pump activity. The dilution of extracellular [Na(+)] and intracellular [K(+)] may be partially explained by increased water retention by the whole animal, although measurements of skeletal muscle fluid compartments using (3)H-labelled inulin suggested that the reduced ion gradients represented a new steady state for skeletal muscle. Conversely, intracellular ion homeostasis within ventricular muscle was maintained at pre-submergence levels, despite a significant increase in tissue water content, with the exception of the hypoxic frogs following 4 months of submergence. Both ventricular muscles and skeletal muscles maintained resting membrane potential at pre-submergence levels throughout the entire period of hibernation. The ability of the skeletal muscle to maintain its resting membrane potential, coincident with decreased Na(+)/K(+) pump activity and lowered membrane permeability, provided evidence of functional channel arrest as an energy-sparing strategy during hibernation in the cold-submerged frog.  (+info)

Mutability of different genetic loci in mammalian cells by metabolically activated carcinogenic polycyclic hydrocarbons. (75/3013)

The relationship between carcinogenesis and mutagenesis in mammalian cells has been determined with 10 polycyclic hydrocarbons with different degrees of carcinogenicity. Mutagenesis was determined in Chinese hamster cells with genetic markers that affect the surface membrane, nucleic-acid synthesis, and protein synthesis. The mutations were characterized by resistance to ouabain, 8-azaguanine, and temperature. Mutagenesis by the carcinogens required metabolic activation and this was provided by the presence of lethally irradiated metabolizing cells. The degree of carcinogenicity was related to the degree of mutagenicity for all three genetic markers. The most potent carcinogen, 7,12-dimethylbenz[a]anthracene, gave the highest mutagenicity and mutagenicity was obtained with 0.01 mug/ml. Treatment of the cells with aminophylline, which increases polycyclic hydrocarbon metabolism, increased mutagenesis by the carcinogens. It is suggested that such an experimental system with these and other mammalian cells should be useful as a sensitive assay for hazardous environmental chemicals.  (+info)

Prevention of fatal cardiac arrhythmias by polyunsaturated fatty acids. (76/3013)

In animal feeding studies, and probably in humans, n-3 polyunsaturated fatty acids (PUFAs) prevent fatal ischemia-induced cardiac arrhythmias. We showed that n-3 PUFAs also prevented such arrhythmias in surgically prepared, conscious, exercising dogs. The mechanism of the antiarrhythmic action of n-3 PUFAs has been studied in spontaneously contracting cultured cardiac myocytes of neonatal rats. Adding arrhythmogenic toxins (eg, ouabain, high Ca(2+), lysophosphatidylcholine, beta-adrenergic agonist, acylcarnitine, and the Ca(2+) ionophore) to the myocyte perfusate caused tachycardia, contracture, and fibrillation of the cultured myocytes. Adding eicosapentaenoic acid (EPA: 5-15 micromol/L) to the superfusate before adding the toxins prevented the expected tachyarrhythmias. If the arrhythmias were first induced, adding the EPA to the superfusate terminated the arrhythmias. This antiarrhythmic action occurred with dietary n-3 and n-6 PUFAs; saturated fatty acids and the monounsaturated oleic acid induced no such action. Arachidonic acid (AA; 20:4n-6) is anomalous because in one-third of the tests it provoked severe arrhythmias, which were found to result from cyclooxygenase metabolites of AA. When cyclooxygenase inhibitors were added with the AA, the antiarrhythmic effect was like those of EPA and DHA. The action of the n-3 and n-6 PUFAs is to stabilize electrically every myocyte in the heart by increasing the electrical stimulus required to elicit an action potential by approximately 50% and prolonging the relative refractory time by approximately 150%. These electrophysiologic effects result from an action of the free PUFAs to modulate sodium and calcium currents in the myocytes. The PUFAs also modulate sodium and calcium channels and have anticonvulsant activity in brain cells.  (+info)

Prevention of nerve conduction deficit in diabetic rats by polyunsaturated fatty acids. (77/3013)

The influence of diets containing gamma-linolenic acid (GLA; 18:3n-6) on sciatic nerve conduction velocity (NCV) was determined in diabetic rats. NCV was lower in diabetic rats fed diets supplemented with olive oil or sunflower seed oil than in nondiabetic rats; rats supplemented with GLA during a 5-wk diabetic period, however, did not exhibit significantly lower NCV. The mean proportion of the phospholipid fatty acid linoleic acid (18:2n-6) was higher in the sciatic nerves of diabetic rats than in the nondiabetic groups irrespective of dietary lipid treatment. Additionally, the proportion of linoleic acid was higher in the diabetic rats fed sunflower oil than in all other groups. Dietary GLA supplementation did not significantly influence the fatty acid composition of nerve membrane phospholipids and there was no obvious correlation between the fatty acid composition of nerve membrane phospholipids and NCV. The content of fructose and glucose in sciatic nerves was higher, whereas that of myo-inositol was lower, in diabetic rats than in nondiabetic rats; however, this was not significantly influenced by dietary GLA. GLA administration did not significantly influence Na(+)-K(+)-exchanging ATPase or ouabain binding activity in sciatic nerve preparations, both of which remained nonsignificantly different in the diabetic and nondiabetic groups. The results suggest that dietary GLA can prevent the deficit in NCV induced by diabetes and that this effect is independent of the nerve phospholipid fatty acid profile, sugar and polyol content, Na(+)-K(+)-exchanging ATPase activity, and ouabain binding. GLA may prevent the deficit in NCV indirectly, possibly by its role as a precursor of vasodilatory prostaglandins. These results confirm that GLA is the active component of evening primrose oil.  (+info)

Hyperaldosteronemia in rabbits inhibits the cardiac sarcolemmal Na(+)-K(+) pump. (78/3013)

Aldosterone upregulates the Na(+)-K(+) pump in kidney and colon, classical target organs for the hormone. An effect on pump function in the heart is not firmly established. Because the myocardium contains mineralocorticoid receptors, we examined whether aldosterone has an effect on Na(+)-K(+) pump function in cardiac myocytes. Myocytes were isolated from rabbits given aldosterone via osmotic minipumps and from controls. Electrogenic Na(+)-K(+) pump current, arising from the 3:2 Na(+):K(+) exchange ratio, was measured in single myocytes using the whole-cell patch clamp technique. Treatment with aldosterone induced a decrease in pump current measured when myocytes were dialyzed with patch pipette solution containing Na(+) in a concentration of 10 mmol/L, whereas there was no effect measured when the solution contained 80 mmol/L Na(+). Aldosterone had no effect on myocardial Na(+)-K(+) pump concentration evaluated by vanadate-facilitated [(3)H]ouabain binding or by K(+)-dependent paranitrophenylphosphatase activity in crude homogenates. Aldosterone induced an increase in intracellular Na(+) activity. The aldosterone-induced decrease in pump current and increased intracellular Na(+) were prevented by cotreatment with the mineralocorticoid receptor antagonist spironolactone. Our results indicate that hyperaldosteronemia decreases the apparent Na(+) affinity of the Na(+)-K(+) pump, whereas it has no effect on maximal pump capacity.  (+info)

Residues of the fourth transmembrane segments of the Na,K-ATPase and the gastric H,K-ATPase contribute to cation selectivity. (79/3013)

We have generated protein chimeras to investigate the role of the fourth transmembrane segments (TM4) of the Na,K- and gastric H, K-ATPases in determining the distinct cation selectivities of these two pumps. Based on a helical wheel analysis, three residues of TM4 of the Na,K-ATPase were changed to their H,K-counterparts. A construct carrying three mutations in TM4 (L319F, N326Y, and T340S) and two control constructs were heterologously expressed in Xenopus laevis oocytes and in the pig kidney epithelial cell line LLC-PK(1). Biochemical ATPase assays demonstrated a large sodium-independent ATPase activity at pH 6.0 for the pump carrying the TM4 substitutions, whereas the control constructs exhibited little or no activity in the absence of sodium. Furthermore, at pH 6.0 the K(1/2)(Na(+)) shifted to 1.5 mM for the TM4 construct compared with 9.4 and 5.9 mM for the controls. In contrast, at pH 7.5 all three constructs had characteristics similar to wild type Na,K-ATPase. Large increases in K(1/2)(K(+)) were observed for the TM4 construct compared with the control constructs both in two-electrode voltage clamp experiments in Xenopus oocytes and in ATPase assays. ATPase assays also revealed a 10-fold shift in vanadate sensitivity for the TM4 construct. Based on these findings, it appears that the three identified TM4 residues play an important role in determining both the specific cation selectivities and the E(1)/E(2) conformational equilibria of the Na,K- and H,K-ATPase.  (+info)

Transport and pharmacological properties of nine different human Na, K-ATPase isozymes. (80/3013)

Na,K-ATPase plays a crucial role in cellular ion homeostasis and is the pharmacological receptor for digitalis in man. Nine different human Na,K-ATPase isozymes, composed of 3 alpha and beta isoforms, were expressed in Xenopus oocytes and were analyzed for their transport and pharmacological properties. According to ouabain binding and K(+)-activated pump current measurements, all human isozymes are functional but differ in their turnover rates depending on the alpha isoform. On the other hand, variations in external K(+) activation are determined by a cooperative interaction mechanism between alpha and beta isoforms with alpha2-beta2 complexes having the lowest apparent K(+) affinity. alpha Isoforms influence the apparent internal Na(+) affinity in the order alpha1 > alpha2 > alpha3 and the voltage dependence in the order alpha2 > alpha1 > alpha3. All human Na,K-ATPase isozymes have a similar, high affinity for ouabain. However, alpha2-beta isozymes exhibit more rapid ouabain association as well as dissociation rate constants than alpha1-beta and alpha3-beta isozymes. Finally, isoform-specific differences exist in the K(+)/ouabain antagonism which may protect alpha1 but not alpha2 or alpha3 from digitalis inhibition at physiological K(+) levels. In conclusion, our study reveals several new functional characteristics of human Na,K-ATPase isozymes which help to better understand their role in ion homeostasis in different tissues and in digitalis action and toxicity.  (+info)