Detection of infrasound and linear acceleration in fishes. (9/233)

Fishes have an acute sensitivity to extremely low-frequency linear acceleration, or infrasound, even down to below 1 Hz. The otolith organs are the sensory system responsible for this ability. The hydrodynamic noise generated by swimming fishes is mainly in the infrasound range, and may be important in courtship and prey predator interactions. Intense infrasound has a deterring effect on some species, and has a potential in acoustic barriers. We hypothesize that the pattern of ambient infrasound in the oceans may be used for orientation in migratory fishes, and that pelagic fishes may detect changes in the surface wave pattern associated with altered water depth and distant land formations. We suggest that the acute sensitivity to linear acceleration could be used for inertial guidance, and to detect the relative velocity of layered ocean currents. Sensitivity to infrasound may be a widespread ability among aquatic organisms, and has also been reported in cephalopods and crustaceans.  (+info)

Fish otoliths: do sizes correlate with taxonomic group, habitat and/or luminescence? (10/233)

Otoliths are dense structures in the ears of fishes that function in hearing and gravity perception. Otolith (sagitta) diameters, as percentages of standard length (% SL), are calculated for 247 marine fish species in 147 families and compared by taxonomic group (usually order), habitat and presence or absence of luminescence. Otolith sizes range from 0.4-31.4 mm and 0.08-11.2% SL. The eel and spiny eel orders Anguilliformes and Notacanthiformes have small to very small otoliths, as do the triggerfish order Tetraodontiformes, pipefish order Gasterosteiformes, billfish suborder Scombroidei and many of the dragonfish order Stomiiformes. The soldierfish order Beryciformes has moderate to very large otoliths. The perch order Perciformes has a wide range of otolith sizes but most have small to moderate otoliths 2-5% SL. Only 16 out of the 247 species have the relatively largest otoliths, over 7% SL. Seven out of these 16 species are also luminous from a variety of habitats. Luminous species have slightly to much larger otoliths than non-luminous species in the same family Both beryciforms and luminous fishes live in low-light environments, where acute colour vision is probably impossible. Most fishes of the epipelagic surface waters have very small otoliths, perhaps due to background noise and/or excessive movement of heavy otoliths in rough seas. Bathypelagic species usually have small otoliths and regressed or absent swimbladders. Other habitats have species with a range of otolith sizes. While the relationship between hearing ability and otolith length is unknown, at least some groups with modified swim-bladders have larger otoliths, which may be associated with more acute hearing.  (+info)

Influence of head-down and lateral decubitus neck flexion on heart rate variability. (11/233)

The purpose of this study was to examine the response of heart rate variability (HRV), a noninvasive index of autonomic control, to head-down neck flexion (HDNF), which engages both otoliths and neck muscle afferents, and to lateral decubitus neck flexion (LNF), in which neck afferents are activated, whereas otolith afferent input is not. HRV and forearm blood flow were evaluated in participants lying prone, during HDNF, lying in the lateral decubitus position, and during LNF. Compared with the prone position, HDNF resulted in lower high-frequency (46.9 +/- 7.1 vs. 62.3 +/- 6.2) and higher low-frequency (53.1 +/- 7.1 vs. 37.7 +/- 6.2) power, expressed as normalized units, along with higher low-frequency-to-high-frequency ratio (1.65 +/- 0.3 vs. 0.78 +/- 0.2), whereas LNF resulted in no alterations in HRV indexes. Furthermore, there were no significant differences in forearm blood flow or vascular resistance among any of the positions. Our data suggest that otolith organs influence autonomic modulation of the heart, supporting previous studies reporting that HDNF elicits increased sympathetic outflow. These data further suggest that HDNF results in a parasympathetic withdrawal from the heart in addition to sympathetic activation.  (+info)

Stereopsis outweighs gravity in the control of the eyes. (12/233)

The eyes are controlled by multiple brain circuits, some phylogenetically old and some new, whose aims may conflict. Old otolith reflexes counterroll the eyes when the head tilts relative to gravity. Newer vergence mechanisms coordinate the eyes to aid stereoptic vision. We show that counterroll hinders stereopsis, weakly when you look into the distance but strongly when you look near. The resolution of this conflict is that counterroll virtually vanishes when monkeys look close, i.e., stereopsis overrides gravity-driven reflexes but only on near gaze. This balance between gyroscopic and stereoptic mechanisms explains many other puzzling features of primate gaze control, such as the weakness of our otolith-ocular reflexes even during far viewing and the strange geometry of the primate counterpitch reflex, which rolls the eyes clockwise when monkeys look leftward while their heads are tipped nose up, but rolls them counterclockwise when the monkeys look rightward, and reverses this pattern when the head is tipped nose down.  (+info)

Natal homing in a marine fish metapopulation. (13/233)

Identifying natal origins of marine fishes is challenging because of difficulties in conducting mark-recapture studies in marine systems. We used natural geochemical signatures in otoliths (ear bones) to determine natal sources in weakfish (Cynoscion regalis), an estuarine-spawning marine fish, in eastern North America. Spawning site fidelity ranged from 60 to 81%, comparable to estimates of natal homing in birds and anadromous fishes. These data were in contrast to genetic analyses of population structure in weakfish. Our findings highlight the need for consideration of spatial processes in fisheries models and have implications for the design of marine reserves in coastal regions.  (+info)

ACTH4-10, substance P, and dizolcipine (MK-801) accelerate functional recovery after hemilabyrinthectomy in goldfish. (14/233)

In this study, we evaluated the goldfish model of hemilabyrinthectomy for investigating potential recovery-promoting drugs. In this lesion model, the unilateral removal of the labyrinth induces a postural imbalance in response to light (Dorsal Light Reflex), from which the animals can recover over time. The behavioral effects of two neuropeptides were tested--namely, of substance P and ACTH4-10, both of which are known to promote functional recovery in several other lesion models. Furthermore, the effect of MK-801, an antagonist of the glutamatergic NMDA-receptor subtype, was tested because this substance has also been shown to exert a neuroprotective effect. After lesion of the right labyrinth, the animals (n = 12) were treated intraperitoneally daily either with vehicle (n = 12), substance P (n = 11), ACTH4-10 (n = 12), or MK-801 (n = 12). Another group (n = 11), which served as a non-lesion control, did not receive hemilabyrinthectomy or systemic injections. The lesion group, treated post-operatively with vehicle, did not recover from the postural deviation over the 24-d testing period. In contrast, all three test substances accelerated the functional recovery after unilateral labyrinthectomy. The decrease of the dorsal light reflex persisted even after cessation of drug treatment after 20 d. The results indicate that using the dorsal light reflex in the model of hemilabyrinthectomy in goldfish provides a useful approach to studying the ability of potential new neurotrophic or neuroprotective drugs to promote functional recovery.  (+info)

Carp experiment in space microgravity--a visual-vestibular sensory conflict model. (15/233)

In the 8-d flight mission of Spacelab-J (STS-47) conducted in 1992, behavior of the dorsal light response (DLR) and EEG activity of the cerebellum were intermittently examined for two carp, normal and otolith-removed. The latter carp had immobilization trouble caused by twisting of the EEG cable on day 2 inflight. The problem continued for the remainder of the experiment. Analyses made on the normal carp provided additional evidence in fish for sensory-motor disorder and readjustment during early phase of microgravity, thus supporting the sensory conflict hypothesis for space motion sickness. In the present report, why and how this space experiment was conducted were reviewed with a brief summary of the results.  (+info)

Mechanism of vestibular adaptation of fish under microgravity. (16/233)

In a space experiment, the adaptation of goldfish behavior during flight and readaptation after landing were investigated. Six goldfish (1 normal, 1 with otoliths removed on both sides, 4 with otoliths removed on one side) were flown in a fish package (F/P) of Aquatic Animal Experiment Unit (AAEU). The dorsal light responses (DLRs) of fish with otoliths removed were recorded after operation until launch and after landing. The behaviors of the fish were recorded with a video camera on Mission Elapsed Time (MET) Day-00, 02, 05, 08, 12. On MET Day-00, two fish with otoliths removed on one side showed flexion of body toward the operated side. These fish also showed rolling behavior toward the operated side. However, the body flexion disappeared on MET Day-05 or MET Day-08. No rolling behaviors were observed after that time. Five fish showed backward looping behaviors during the mission. Although the frequency of looping episodes decreased after MET Day-08, five fish still showed looping behavior on MET Day-12, that was the last day of video recording on orbit. In microgravity, visual system of fish did not seem to provide sufficient cues to prevent them from looping or rolling. After landing, no looping and rolling behavior was observed. However, the tilt angle of the DLR increased in the fish with otolith removed 5 month before launch but not in normal fish and those with otoliths removed 2 weeks before launch. These results suggest that the behavioral dysfunction and the adaptational process in space are dependent on vestibular inputs.  (+info)