Osteoprotegerin prevents and reverses hypercalcemia in a murine model of humoral hypercalcemia of malignancy. (9/844)

Osteoprotegerin (OPG), a novel, secreted tumor necrosis factor receptor family member that inhibits osteoclast formation and activity was examined for its activity in a syngeneic tumor model of humoral hypercalcemia of malignancy. Normal mice bearing Colon-26 tumors develop increases in both parathyroid hormone-related protein (PTHrP) expression and plasma PTHrP, marked hypercalcemia, and increased bone resorption. OPG, given either at the onset of hypercalcemia or after it had occurred, blocked tumor-induced increases in bone resorption and hypercalcemia and rapidly normalized blood ionized calcium. In tumor-bearing mice, OPG treatments reduced osteoclast activity from approximately 2-fold above normal into the subphysiological range but had no effects on tumor size, tumor-induced cachexia, or PTHrP levels. The potent effects of OPG in this humoral hypercalcemia of malignancy model suggest a potential therapeutic role for OPG in the prevention and treatment of this disorder.  (+info)

Osteoprotegerin and its ligand: A new paradigm for regulation of osteoclastogenesis and bone resorption. (10/844)

In just 3 years, striking new advances have been made in understanding the molecular mechanisms that govern the crosstalk between osteoblasts/stromal cells and hemopoietic osteoclast precursor cells that leads to osteoclastogenesis. Led first by the discovery of osteoprotegerin (OPG), a naturally occurring protein with potent osteoclastogenesis inhibitory activity, rapid progress was made to the isolation of RANKL, a transmembrane ligand expressed on osteoblasts/stromal cells, that binds to RANK, a transmembrane receptor on hemopoietic osteoclast precursor cells. The interaction of RANK and RANKL initiates a signaling and gene expression cascade that results in differentiation and maturation of osteoclast precursor cells to active osteoclasts capable of resorbing bone. Osteoprotegerin acts as a decoy receptor; it binds to RANKL and blocks its interaction with RANK, thus inhibiting osteoclast development. Many of the calciotropic hormones and cytokines, including vitamin D3, parathyroid hormone, prostaglandin E2 and interleukin-11, appear to stimulate osteoclastogenesis through the dual action of inhibiting production of OPG and stimulating production of RANKL. Estrogen, on the other hand, appears to inhibit production of RANKL and RANKL-stimulated osteoclastogenesis. Recently, the results of the first clinical trial with OPG supported its potential as a therapeutic agent for osteoporosis. The new understanding provided by the RANK/RANKL/OPG paradigm for both differentiation and activation of osteoclasts has had tremendous impact on the field of bone biology and has opened new avenues for development of possible treatments of diseases characterized by excessive bone resorption.  (+info)

Osteoprotegerin is an alpha vbeta 3-induced, NF-kappa B-dependent survival factor for endothelial cells. (11/844)

Osteopontin protects endothelial cells from apoptosis induced by growth factor withdrawal. This interaction is mediated by the alpha(v)beta(3) integrin and is NF-kappaB-dependent (Scatena, M., Almeida, M., Chaisson, M. L., Fausto, N., Nicosia, R. F., and Giachelli, C. M. (1998) J. Cell Biol. 141, 1083-1093). In the present study we used differential cloning to identify osteopontin-induced, NF-kappaB-dependent genes in endothelial cells. One of the genes identified in this screen was osteoprotegerin, a member of the tumor necrosis factor receptor superfamily. By Northern and Western blot analysis, osteoprotegerin mRNA and protein levels were very low in endothelial cells plated on the non-integrin cell attachment factor, poly-d-lysine. In contrast, osteoprotegerin mRNA and protein levels were induced 5-7-fold following alpha(v)beta(3) ligation by osteopontin. Osteoprotegerin induction by osteopontin was time-dependent and observed as early as 3 h following treatment. NF-kappaB inactivation achieved by over expression of an IkappaB super repressor in endothelial cells completely inhibited osteoprotegerin induction by osteopontin. Finally, purified osteoprotegerin protected endothelial cells with inactive NF-kappaB from apoptosis induced by growth factor deprivation. These data suggest that alpha(v)beta(3)-mediated endothelial survival depends on osteoprotegerin induction by NF-kappaB and indicate a new function for osteoprotegerin in endothelial cells.  (+info)

Involvement of osteoprotegerin/osteoclastogenesis inhibitory factor in the stimulation of osteoclast formation by parathyroid hormone in mouse bone cells. (12/844)

OBJECTIVE: Recently, osteoprotegerin (OPG)/osteoclastogenesis inhibitory factor (OCIF) has been shown to inhibit osteoclast differentiation. On the other hand, we have reported that parathyroid hormone (PTH) stimulated osteoclast formation, presumably through a PTH-responsive cAMP-dependent protein kinase (PKA) pathway, in mouse bone cells. DESIGN AND METHODS: The present study was performed to examine how OPG/OCIF expression is regulated by PTH and to further investigate the possible involvement of OPG/OCIF in the stimulation of osteoclast formation by PTH in mouse bone cells. OPG/OCIF mRNA expression was analyzed by Northern hybridization after 24h treatments of mouse whole bone cells and mouse stromal cell line, ST2 cells with PTH or various second messenger analogs. RESULTS: Human (h) PTH(1-34) (10(-10) and 10(-8)mol/l) but not 10(-8)mol/l hPTH(3-34) down-regulated OPG/OCIF mRNA expression in mouse bone cells. Dibutyryl cAMP, but not phorbol ester, an activator of protein kinase C, or A23187, a calcium ionophore, down-regulated it. The same was also observed in ST2 cells, suggesting that stromal cells are responsible for the inhibitory effect of PTH and cAMP analogs on OPG/OCIF mRNA expression in mouse bone cells. CONCLUSIONS: The present study indicates that PTH down-regulates OPG/OCIF mRNA expression through the PKA pathway in stromal cells, which would result in the stimulation of osteoclast formation.  (+info)

The osteoblast-specific transcription factor Cbfa1 contributes to the expression of osteoprotegerin, a potent inhibitor of osteoclast differentiation and function. (13/844)

Bone formation and resorption are tightly coupled under normal conditions, and the interaction of osteoclast precursors with cells of the osteoblast lineage is a prerequisite for osteoclast formation. Cbfa1 is an osteoblast-specific transcription factor that is essential for osteoblast differentiation and bone formation. At present, it is not known whether Cbfa1 regulates any of the osteoblast-derived factors involved in the bone resorption pathway. Osteoprotegerin (OPG) is an osteoblast-secreted glycoprotein that functions as a potent inhibitor of osteoclast differentiation and bone resorption. Cloning and computer analysis of a 5.9-kilobase human OPG promoter sequence revealed the presence of 12 putative Cbfa1 binding elements (osteoblast-specific element 2 (OSE(2))), suggesting a possible regulation of OPG by Cbfa1. We cloned the promoter upstream of the beta-galactosidase reporter gene (pOPG5. 9betagal) and evaluated whether Cbfa1 could regulate its expression in transient transfection assays. The 5.9-kilobase promoter directed increased levels of reporter gene expression, reminiscent of OPG protein levels in osteoblastic cell lines (BALC and U2OS) as compared with the nonosteoblastic cell line COS1. Cotransfection of a Cbfa1 expression construct along with pOPG5.9betagal reporter construct led to 39-, 7-, and 16-fold increases in beta-galactosidase activity in COS1, BALC, and U2OS cells, respectively. Removal of all the putative OSE(2) elements led to an almost complete loss of transactivation. Mutational analysis demonstrated that the proximal OSE(2) element contributes to a majority of the effects of Cbfa1, and Cbfa1 bound to the proximal element in a sequence-specific manner. Further, overexpression of Cbfa1 led to a 54% increase in OPG protein levels in U2OS cells. These results indicate that Cbfa1 regulates the expression of OPG, thereby further contributing to a molecular link between bone formation and resorption.  (+info)

Osteoprotegerin ligand modulates murine osteoclast survival in vitro and in vivo. (14/844)

Osteoprotegerin ligand (OPGL) targets osteoclast precursors and osteoclasts to enhance differentiation and activation, however, little is known about OPGL effects on osteoclast survival. In vitro, the combination of OPGL + colony-stimulating factor-1 (CSF-1) is required for optimal osteoclast survival. Ultrastructurally, apoptotic changes were observed in detached cells and culture lysates exhibited elevated caspase 3 activity, particularly in cultures lacking CSF-1. DEVD-FMK (caspase 3 inhibitor) partially protected cells when combined with OPGL, but not when used alone or in combination with CSF-1. CSF-1 maintained NF-kappaB activation and increased the expression of bcl-2 and bcl-X(L) mRNA, but had no effect on JNK activation. In contrast, OPGL enhanced both NF-kappaB and JNK kinase activation and increased the expression of c-src, but not bcl-2 and bcl-X(L) mRNA. These data suggest that aspects of both OPGL's and CSF-1's signaling/survival pathways are required for optimal osteoclast survival. In mice, a single dose of OPG, the OPGL decoy receptor, led to a >90% loss of osteoclasts because of apoptosis within 48 hours of exposure without impacting osteoclast precursor cells. Therefore, OPGL is essential, but not sufficient, for osteoclast survival and endogenous CSF-1 levels are insufficient to maintain osteoclast viability in the absence of OPGL.  (+info)

Osteoprotegerin reverses osteoporosis by inhibiting endosteal osteoclasts and prevents vascular calcification by blocking a process resembling osteoclastogenesis. (15/844)

High systemic levels of osteoprotegerin (OPG) in OPG transgenic mice cause osteopetrosis with normal tooth eruption and bone elongation and inhibit the development and activity of endosteal, but not periosteal, osteoclasts. We demonstrate that both intravenous injection of recombinant OPG protein and transgenic overexpression of OPG in OPG(-/-) mice effectively rescue the osteoporotic bone phenotype observed in OPG-deficient mice. However, intravenous injection of recombinant OPG over a 4-wk period could not reverse the arterial calcification observed in OPG(-/-) mice. In contrast, transgenic OPG delivered from mid-gestation through adulthood does prevent the formation of arterial calcification in OPG(-/-) mice. Although OPG is normally expressed in arteries, OPG ligand (OPGL) and receptor activator of NF-kappaB (RANK) are not detected in the arterial walls of wild-type adult mice. Interestingly, OPGL and RANK transcripts are detected in the calcified arteries of OPG(-/-) mice. Furthermore, RANK transcript expression coincides with the presence of multinuclear osteoclast-like cells. These findings indicate that the OPG/OPGL/RANK signaling pathway may play an important role in both pathological and physiological calcification processes. Such findings may also explain the observed high clinical incidence of vascular calcification in the osteoporotic patient population.  (+info)

Functional human T-cell immunity and osteoprotegerin ligand control alveolar bone destruction in periodontal infection. (16/844)

Periodontitis, a prime cause of tooth loss in humans, is implicated in the increased risk of systemic diseases such as heart failure, stroke, and bacterial pneumonia. The mechanisms by which periodontitis and antibacterial immunity lead to alveolar bone and tooth loss are poorly understood. To study the human immune response to specific periodontal infections, we transplanted human peripheral blood lymphocytes (HuPBLs) from periodontitis patients into NOD/SCID mice. Oral challenge of HuPBL-NOD/SCID mice with Actinobacillus actinomycetemcomitans, a well-known Gram-negative anaerobic microorganism that causes human periodontitis, activates human CD4(+) T cells in the periodontium and triggers local alveolar bone destruction. Human CD4(+) T cells, but not CD8(+) T cells or B cells, are identified as essential mediators of alveolar bone destruction. Stimulation of CD4(+) T cells by A. actinomycetemcomitans induces production of osteoprotegerin ligand (OPG-L), a key modulator of osteoclastogenesis and osteoclast activation. In vivo inhibition of OPG-L function with the decoy receptor OPG diminishes alveolar bone destruction and reduces the number of periodontal osteoclasts after microbial challenge. These data imply that the molecular explanation for alveolar bone destruction observed in periodontal infections is mediated by microorganism-triggered induction of OPG-L expression on CD4(+) T cells and the consequent activation of osteoclasts. Inhibition of OPG-L may thus have therapeutic value to prevent alveolar bone and/or tooth loss in human periodontitis.  (+info)