Myocardial osteopontin expression coincides with the development of heart failure. (1/1452)

To identify genes that are differentially expressed during the transition from compensated hypertrophy to failure, myocardial mRNA from spontaneously hypertensive rats (SHR) with heart failure (SHR-F) was compared with that from age-matched SHR with compensated hypertrophy (SHR-NF) and normotensive Wistar-Kyoto rats (WKY) by differential display reverse transcriptase-polymerase chain reaction. Characterization of a transcript differentially expressed in SHR-F yielded a cDNA with homology to the extracellular matrix protein osteopontin. Northern analysis showed low levels of osteopontin mRNA in left ventricular myocardium from WKY and SHR-NF but a markedly increased (approximately 10-fold) level in SHR-F. In myocardium from WKY and SHR-NF, in situ hybridization showed only scant osteopontin mRNA, primarily in arteriolar cells. In SHR-F, in situ hybridization revealed abundant expression of osteopontin mRNA, primarily in nonmyocytes in the interstitial and perivascular space. Similar findings for osteopontin protein were observed in the midwall region of myocardium from the SHR-F group. Consistent with the findings in SHR, osteopontin mRNA was minimally increased (approximately 1.9-fold) in left ventricular myocardium from nonfailing aortic-banded rats with pressure-overload hypertrophy but was markedly increased (approximately 8-fold) in banded rats with failure. Treatment with captopril starting before or after the onset of failure in the SHR reduced the increase in left ventricular osteopontin mRNA levels. Thus, osteopontin expression is markedly increased in the heart coincident with the development of heart failure. The source of osteopontin in SHR-F is primarily nonmyocytes, and its induction is inhibited by an angiotensin-converting enzyme inhibitor, suggesting a role for angiotensin II. Given the known biological activities of osteopontin, including cell adhesion and regulation of inducible nitric oxide synthase gene expression, these data suggest that it could play a role in the pathophysiology of heart failure.  (+info)

Regulation of chondrocyte differentiation by Cbfa1. (2/1452)

Cbfa1, a developmentally expressed transcription factor of the runt family, was recently shown to be essential for osteoblast differentiation. We have investigated the role of Cbfa1 in endochondral bone formation using Cbfa1-deficient mice. Histology and in situ hybridization with probes for indian hedgehog (Ihh), collagen type X and osteopontin performed at E13.5, E14.5 and E17.5 demonstrated a lack of hypertrophic chondrocytes in the anlagen of the humerus and the phalanges and a delayed onset of hypertrophy in radius/ulna in Cbfa1-/- mice. Detailed analysis of Cbfa1 expression using whole mount in situ hybridization and a lacZ reporter gene reveled strong expression not only in osteoblasts but also in pre-hypertrophic and hypertrophic chondrocytes. Our studies identify Cbfa1 as a major positive regulator of chondrocyte differentiation.  (+info)

Osteopontin expression in fetal and mature human kidney. (3/1452)

Osteopontin is a secreted phosphoprotein that is expressed by normal kidney, and has been associated with a number of functions including cell adhesion, migration, signaling, and biomineralization. Although there is a vast literature detailing osteopontin localization in various rodent models of both development and disease, this article presents the first comprehensive description of osteopontin localization in human kidney. In this study, immunohistochemistry, immunoelectron microscopy, in situ hybridization, and Northern blotting are used to analyze osteopontin protein and mRNA expression in human fetal and normal mature renal tissue. Osteopontin is expressed in the human embryonic renal tubular epithelium beginning on approximately day 75 to 80 of gestation. In the fetal kidney, osteopontin can also be seen occasionally expressed in the ureteric buds and in some interstitial cells. As localized at the protein and mRNA level, the tubular expression of osteopontin increases with increasing gestational age and persists into adulthood. In the normal adult kidney, osteopontin is localized primarily to the distal nephron and is strongly expressed by the thick ascending limb of the loops of Henle. Osteopontin expression can also be observed in some collecting duct epithelium. In cases that exhibit foci of interstitial fibrosis and an associated influx of interstitial macrophages, osteopontin expression is significantly upregulated in all tubular segments, including proximal tubules.  (+info)

Generation and characterization of human smooth muscle cell lines derived from atherosclerotic plaque. (4/1452)

The study of atherogenesis in humans has been restricted by the limited availability and brief in vitro life span of plaque smooth muscle cells (SMCs). We describe plaque SMC lines with extended life spans generated by the expression of the human papillomavirus (HPV)-16 E6 and E7 genes, which has been shown to extend the life span of normal adult human aortic SMCs. Resulting cell lines (pdSMC1A and 2) demonstrated at least 10-fold increases in life span; pdSMC1A became immortal. The SMC identity of both pdSMC lines was confirmed by SM22 mRNA expression. pdSMC2 were generally diploid but with various structural and numerical alterations; pdSMC1A demonstrated several chromosomal abnormalities, most commonly -Y, +7, -13, anomalies previously reported in both primary pdSMCs and atherosclerotic tissue. Confluent pdSMC2 appeared grossly similar to HPV-16 E6/E7-expressing normal adult aortic SMCs (AASMCs), exhibiting typical SMC morphology/growth patterns; pdSMC1A displayed irregular cell shape/organization with numerous mitotic figures. Dedifferentiation to a synthetic/proliferative phenotype has been hypothesized as a critical step in atherogenesis, because rat neonatal SMCs and adult intimal SMCs exhibit similar gene expression patterns. To confirm that our pdSMC lines likewise express this apparent plaque phenotype, osteopontin, platelet-derived growth factor B, and elastin mRNA levels were determined in pdSMC1A, pdSMC2, and AASMCs. However, no significant increases in osteopontin or platelet-derived growth factor B expression levels were observed in either pdSMC compared with AASMCs. pdSMC2 alone expressed high levels of elastin mRNA. Lower levels of SM22 mRNA in pdSMC1A suggested greater dedifferentiation and/or additional population doublings in pdSMC1A relative to pdSMC2. Both pdSMC lines (particularly 1A) demonstrated high message levels for matrix Gla protein, previously reported to be highly expressed by human neointimal SMCs in vitro. These results describe 2 novel plaque cell lines exhibiting various features of plaque SMC biology; pdSMC2 may represent an earlier plaque SMC phenotype, whereas pdSMC1A may be representative of cells comprising an advanced atherosclerotic lesion.  (+info)

Strong induction of members of the chitinase family of proteins in atherosclerosis: chitotriosidase and human cartilage gp-39 expressed in lesion macrophages. (5/1452)

Atherosclerosis is initiated by the infiltration of monocytes into the subendothelial space of the vessel wall and subsequent lipid accumulation of the activated macrophages. The molecular mechanisms involved in the anomalous behavior of macrophages in atherogenesis have only partially been disclosed. Chitotriosidase and human cartilage gp-39 (HC gp-39) are members of the chitinase family of proteins and are expressed in lipid-laden macrophages accumulated in various organs during Gaucher disease. In addition, as shown in this study, chitotriosidase and HC gp-39 can be induced with distinct kinetics in cultured macrophages. We investigated the expression of these chitinase-like genes in the human atherosclerotic vessel wall by in situ hybridizations on atherosclerotic specimens derived from femoral artery (4 specimens), aorta (4 specimens), iliac artery (3 specimens), carotid artery (4 specimens), and coronary artery (1 specimen), as well as 5 specimens derived from apparently normal vascular tissue. We show for the first time that chitotriosidase and HC gp-39 expression was strongly upregulated in distinct subsets of macrophages in the atherosclerotic plaque. The expression patterns of chitotriosidase and HC gp-39 were compared and shown to be different from the patterns observed for the extracellular matrix protein osteopontin and the macrophage marker tartrate-resistant acid phosphatase. Our data emphasize the remarkable phenotypic variation among macrophages present in the atherosclerotic lesion. Furthermore, chitotriosidase enzyme activity was shown to be elevated up to 55-fold in extracts of atherosclerotic tissue. Although a function for chitotriosidase and HC gp-39 has not been identified, we hypothesize a role in cell migration and tissue remodeling during atherogenesis.  (+info)

IL-1 up-regulates osteopontin expression in experimental crescentic glomerulonephritis in the rat. (6/1452)

Osteopontin (OPN) is a macrophage chemotactic and adhesion molecule that acts to promote macrophage infiltration in rat anti-glomerular basement membrane (GBM) glomerulonephritis. The present study investigated the role of interleukin-1 (IL-1) in the up-regulation of renal OPN expression in this disease model. Accelerated anti-GBM glomerulonephritis was induced in groups of six rats. Animals were treated by a constant infusion of the IL-1 receptor antagonist or saline (control) over days -1 to 14 (induction phase) or days 7 to 21 (established disease). In normal rat kidney, OPN was expressed in a few tubules (<5%) and absent from glomeruli. During the development of rat anti-GBM disease (days 7 to 21), there was substantial up-regulation of OPN mRNA and protein expression in glomeruli (>5 cells per glomerular cross-section) and tubular epithelial cells (50-75% OPN-positive). Up-regulation of OPN expression was associated with macrophage accumulation within the kidney, severe proteinuria, loss of renal function, and severe histological damage including glomerular crescentic formation and tubulointerstitial fibrosis. In contrast, IL-1 receptor antagonist treatment of either the induction phase of disease or established disease significantly reduced OPN mRNA and protein expression in glomeruli (/75-85%, P < 0.001) and tubules (/45-60%, P < 0.001). The reduction in OPN expression was associated with significant inhibition of macrophage accumulation and progressive renal injury. In vitro, the addition of IL-1 to the normal rat tubular epithelial cell line NRK52E up-regulated OPN mRNA and protein levels, an effect that was dose-dependent and inhibited by the addition of IL-1 receptor antagonist, thus demonstrating that IL-1 can act directly to up-regulate renal OPN expression. In conclusion, this study provides in vivo and in vitro evidence that IL-1 up-regulates OPN expression in experimental kidney disease and support for the argument that inhibition of OPN expression is one mechanism by which IL-1 receptor antagonist treatment suppresses macrophage-mediated renal injury.  (+info)

Tretinoin prevents age-related renal changes and stimulates antioxidant defenses in cultured renal mesangial cells. (7/1452)

Age-related progressive glomerular sclerosis in the rat is associated with increased expression of tumor necrosis factor-beta1 and increased protein content in the renal cortex, enhanced production of H2O2, in both renal glomeruli and mesangial cells (MCs) cultured from them, as well as augmented glomerular oxidative damage. We have previously shown that tretinoin-treated old male Fischer 344 rats have 30% lower protein content in the renal cortex than control old rats. Here, we report that this effect may depend on the inhibition of the expression of tumor necrosis factor-beta1, a matrigenic cytokine, and osteopontin, a protein with cell adhesive and chemotactic properties. In addition, we show that tretinoin prevents the cytotoxicity of H2O2 in cultured human MCs by increasing both the catalase activity and the reduced glutathione content, which are dose- and time-dependent changes. These increases were not dependent on each other: when these effects were previously inhibited with 3-amino-1,2,4-atriazole or L-buthionine-(S, R)-sulfoximine, respectively, tretinoin still induced the increase of the other noninhibited antioxidant defense. An enhanced gene transcription is the most likely mechanism involved in the tretinoin-induced stimulation of MC antioxidant defense systems because 1) preincubation of MCs with actinomycin D or cycloheximide fully abolished it; 2) tretinoin-incubated MCs showed increased levels of catalase mRNA and gamma-glutamyl-cysteine synthetase (catalytic subunit) mRNA, the latter being the rate-limiting step in de novo reduced glutathione synthesis; and 3) the stability of both mRNA was unchanged by tretinoin. These results show one strategy of protecting renal cells from H2O2-mediated injury based on increasing their antioxidant defenses.  (+info)

Maturational disturbance of chondrocytes in Cbfa1-deficient mice. (8/1452)

Cbfa1, a transcription factor that belongs to the runt-domain gene family, plays an essential role in osteogenesis. Cbfa1-deficient mice completely lacked both intramembranous and endochondral ossification, owing to the maturational arrest of osteoblasts, indicating that Cbfa1 has a fundamental role in osteoblast differentiation. However, Cbfa1 was also expressed in chondrocytes, and its expression was increased according to the maturation of chondrocytes. Terminal hypertrophic chondrocytes expressed Cbfa1 extensively. The significant expression of Cbfa1 in hypertrophic chondrocytes was first detected at embryonic day 13.5 (E13.5), and its expression in hypertrophic chondrocytes was most prominent at E14.5-16.5. In Cbfa1-deficient mice, whose entire skeleton was composed of cartilage, the chondrocyte differentiation was disturbed. Calcification of cartilage occurred in the restricted parts of skeletons, including tibia, fibula, radius, and ulna. Type X collagen, BMP6, and Indian hedgehog were expressed in their hypertrophic chondrocytes. However, osteopontin, bone sialoprotein, and collagenase 3 were not expressed at all, indicating that they are directly regulated by Cbfa1 in the terminal hypertrophic chondrocytes. Chondrocyte differentiation was severely disturbed in the rest of the skeleton. The expression of PTH/PTHrP receptor, Indian hedgehog, type X collagen, and BMP6 was not detected in humerus and femur, indicating that chondrocyte differentiation was blocked before prehypertrophic chondrocytes. These findings demonstrate that Cbfa1 is an important factor for chondrocyte differentiation.  (+info)