Bleomycin-induced pulmonary injury in mice deficient in SPARC. (25/465)

SPARC (secreted protein, acidic and rich in cysteine) is a component of the matrix that appears to regulate tissue remodeling. There is evidence that it accumulates in the lung in the setting of pulmonary injury and fibrosis, but direct evidence of its involvement is only now emerging. We therefore investigated the development of pulmonary fibrosis induced by bleomycin administered either intratracheally or intraperitoneally in mice deficient in SPARC. Bleomycin (0.15 U/mouse) given intratracheally induced significantly more pulmonary fibrosis in mice deficient in SPARC compared with that in wild-type control mice, with the mutant mice demonstrating greater neutrophil accumulation in the lung. However, in wild-type and SPARC-deficient mice given intraperitoneal bleomycin (0.8 U/injection x 5 injections over 14 days), the pattern and severity of pulmonary fibrosis, as well as the levels of leukocyte recruitment, were similar in both strains of mice. These findings suggest that the involvement of SPARC in pulmonary injury is likely to be complex, dependent on several factors including the type, duration, and intensity of the insult. Furthermore, increased neutrophil accumulation in the peritoneal cavity was also observed in SPARC-null mice after acute chemical peritonitis. Together, these data suggest a possible role for SPARC in the recruitment of neutrophils to sites of acute inflammation.  (+info)

Transcriptional control of SPARC by v-Jun and other members of the AP1 family of transcription factors. (26/465)

Transformation of chick embryo fibroblasts by the v-Jun oncoprotein correlates with a down-regulation of the extracellular matrix protein SPARC and repression of the corresponding mRNA. Alteration in SPARC expression has been repeatedly reported in human cancers of various origin, and is thought to contribute to the remodeling of the extracellular matrix during neoplastic progression. Transcriptional control of SPARC is poorly understood. We show here that (i) v-Jun-mediated repression of the endogenous SPARC gene is enhanced by Fra2 but alleviated by ATF2, Fra2 and ATF2 being the two major partners of v-Jun in the transformed cells; (ii) high basal activity as well as repression by v-Jun and modulation by Fra2 and ATF2 is restricted to a small proximal fragment (-124/+16) of the chicken SPARC promoter; (iii) the activity of this minimal promoter is modulated by all the AP1 family members known in chickens (c-Jun and JunD; c-Fos and Fra2; ATF2; c-Maf, MafA, and MafB). Taken together these data demonstrate that, at least in avian primary cells, SPARC expression is under the control of the AP1 transcription factor. Further studies with the minimal (-124/+16) promoter fragment are needed to understand how this control takes place at the molecular level.  (+info)

Expression profiling in the muscular dystrophies: identification of novel aspects of molecular pathophysiology. (27/465)

We used expression profiling to define the pathophysiological cascades involved in the progression of two muscular dystrophies with known primary biochemical defects, dystrophin deficiency (Duchenne muscular dystrophy) and alpha-sarcoglycan deficiency (a dystrophin-associated protein). We employed a novel protocol for expression profiling in human tissues using mixed samples of multiple patients and iterative comparisons of duplicate datasets. We found evidence for both incomplete differentiation of patient muscle, and for dedifferentiation of myofibers to alternative lineages with advancing age. One developmentally regulated gene characterized in detail, alpha-cardiac actin, showed abnormal persistent expression after birth in 60% of Duchenne dystrophy myofibers. The majority of myofibers ( approximately 80%) remained strongly positive for this protein throughout the course of the disease. Other developmentally regulated genes that showed widespread overexpression in these muscular dystrophies included embryonic myosin heavy chain, versican, acetylcholine receptor alpha-1, secreted protein, acidic and rich in cysteine/osteonectin, and thrombospondin 4. We hypothesize that the abnormal Ca(2)+ influx in dystrophin- and alpha-sarcoglycan-deficient myofibers leads to altered developmental programming of developing and regenerating myofibers. The finding of upregulation of HLA-DR and factor XIIIa led to the novel identification of activated dendritic cell infiltration in dystrophic muscle; these cells mediate immune responses and likely induce microenvironmental changes in muscle. We also document a general metabolic crisis in dystrophic muscle, with large scale downregulation of nuclear-encoded mitochondrial gene expression. Finally, our expression profiling results show that primary genetic defects can be identified by a reduction in the corresponding RNA.  (+info)

Molecular anatomy of an intracranial aneurysm: coordinated expression of genes involved in wound healing and tissue remodeling. (28/465)

BACKGROUND AND PURPOSE: Approximately 6% of human beings harbor an unruptured intracranial aneurysm. Each year in the United States, >30 000 people suffer a ruptured intracranial aneurysm, resulting in subarachnoid hemorrhage. Despite the high incidence and catastrophic consequences of a ruptured intracranial aneurysm and the fact that there is considerable evidence that predisposition to intracranial aneurysm has a strong genetic component, very little is understood with regard to the pathology and pathogenesis of this disease. METHODS: To begin characterizing the molecular pathology of intracranial aneurysm, we used a global gene expression analysis approach (SAGE-Lite) in combination with a novel data-mining approach to perform a high-resolution transcript analysis of a single intracranial aneurysm, obtained from a 3-year-old girl. RESULTS: SAGE-Lite provides a detailed molecular snapshot of a single intracranial aneurysm. These data suggest that, at least in this specific case, aneurysmal dilation results in a highly dynamic cellular environment in which extensive wound healing and tissue/extracellular matrix remodeling are taking place. Specifically, we observed significant overexpression of genes encoding extracellular matrix components (eg, COL3A1, COL1A1, COL1A2, COL6A1, COL6A2, elastin) and genes involved in extracellular matrix turnover (TIMP-3, OSF-2), cell adhesion and antiadhesion (SPARC, hevin), cytokinesis (PNUTL2), and cell migration (tetraspanin-5). CONCLUSIONS: Although these are preliminary data, representing analysis of only one individual, we present a unique first insight into the molecular basis of aneurysmal disease and define numerous candidate markers for future biochemical, physiological, and genetic studies of intracranial aneurysm. Products of these genes will be the focus of future studies in wider sample sets.  (+info)

The de-adhesive activity of matricellular proteins: is intermediate cell adhesion an adaptive state? (29/465)

The process of cellular de-adhesion is potentially important for the ability of a cell to participate in morphogenesis and to respond to injurious stimuli. Cellular de-adhesion is induced by the highly regulated matricellular proteins TSP1 and 2, tenascin-C, and SPARC. These proteins induce a rapid transition to an intermediate state of adhesiveness characterized by loss of actin-containing stress fibers and restructuring of the focal adhesion plaque that includes loss of vinculin and alpha-actinin, but not of talin or integrin. This process involves intracellular signaling mediators, which are engaged in response to matrix protein-receptor interactions. Each of these proteins employs different receptors and signaling pathways to achieve this common morphologic endpoint. What is the function of this intermediate adhesive state and what is the physiologic significance of this action of the matricellular proteins? Given that matricellular proteins are expressed in response to injury and during development, one can speculate that the intermediate adhesive state is an adaptive condition that facilitates expression of specific genes that are involved in repair and adaptation. Since cell shape is maintained in weakly adherent cells, this state might induce survival signals to prevent apoptosis due to loss of strong cell adhesion, but yet allow for cell locomotion. The three matricellular proteins considered here might each preferentially facilitate one or more aspects of this adaptive response rather than all of these equally. Currently, we have only preliminary data to support the specific ideas proposed in this article. It will be interesting in the next several years to continue to elucidate the biological roles of the intermediate adhesive state induced by these matricellular proteins. and focal adhesions in a cell that nevertheless maintains a spread, extended morphology and integrin clustering. TSP1, tenascin-C, and SPARC induce the intermediate adhesive state, as shown by the red arrows. The significance of each adhesive state for cell behavior is indicated beneath the cells. The weak adhesive state would be consistent with cells undergoing apoptosis during remodeling or those undergoing cytokinesis. The strong adhesive state is characteristic of a differentiated, quiescent cell, whereas cells in the intermediate adhesive state would include those involved in responding to injury during wound healing or in tissue remodeling during morphogenesis.  (+info)

Antiplatelet agents in tissue factor-induced blood coagulation. (30/465)

Several platelet inhibitors were examined in a tissue factor (TF)-initiated model of whole blood coagulation. In vitro coagulation of human blood from normal donors was initiated by 25 pM TF while contact pathway coagulation was suppressed using corn trypsin inhibitor. Products of the reaction were analyzed by immunoassay. Preactivation of platelets with the thrombin receptor activation peptide did not influence significantly the clotting time or thrombin-antithrombin III complex (TAT) formation. Addition of prostaglandin E(1) (5 microM) caused a significant delay in clotting (10.0 minutes) versus control (4.3 minutes). The prolonged clotting time is correlated with delays in platelet activation, formation of TAT, and fibrinopeptide A (FPA) release. In blood from subjects receiving acetylsalicylic acid (ASA or aspirin), none of the measured products of coagulation were significantly affected. Similarly, no significant effect was observed when 5 microM dipyridamole (Persantine) was added to the blood. Antagonists of the platelet integrin receptor glycoprotein (gp) IIb/IIIa had intermediate effects on the reaction. A 1- to 2-minute delay in clot time and FPA formation was observed with addition of the antibodies 7E3 and Reopro (abciximab) (10 microg/mL), accompanied by a 40% to 70% reduction in the maximal rate of TAT formation and delay in platelet activation. The cyclic heptapetide, Integrilin (eptifibatide), at 5 microM concentration slightly prolonged clot time and significantly attenuated the maximum rate of TAT formation. The disruption of the gpIIb/IIIa-ligand interaction not only affects platelet aggregation, but also decreases the rate of TF-initiated thrombin generation in whole blood, demonstrating a potent antithrombotic effect superimposed on the antiaggregation characteristics.  (+info)

The matricellular protein SPARC/osteonectin as a newly identified factor up-regulated in obesity. (31/465)

Alterations in the expression level of genes may contribute to the development and pathophysiology of obesity. To find genes differentially expressed in adipose tissue during obesity, we performed suppression subtractive hybridization on epididymal fat mRNA from goldthioglucose (GTG) obese mice and from their lean littermates. We identified the secreted protein acidic and rich in cysteine (SPARC), a protein that mediates cell-matrix interactions and plays a role in modulation of cell adhesion, differentiation, and angiogenesis. SPARC mRNA expression in adipose tissue was markedly increased (between 3- and 6-fold) in three different models of obesity, i.e. GTG mice, ob/ob mice, and AKR mice, after 6 weeks of a high fat diet. Immunoblotting of adipocyte extracts revealed a similar increase in protein level. Using a SPARC-specific ELISA, we demonstrated that SPARC is secreted by isolated adipocytes. We found that insulin administration to mice increased SPARC mRNA in the adipose tissue. Food deprivation had no effect on SPARC expression, but after high fat refeeding SPARC mRNA levels were significantly increased. Our results reveal both hormonal and nutritional regulation of SPARC expression in the adipocyte, and importantly, its alteration in obesity. Finally, we show that purified SPARC increased mRNA levels of plasminogen activator inhibitor 1 (PAI-1) in cultured rat adipose tissue suggesting that elevated adipocyte expression of SPARC might contribute to the abnormal expression of PAI-1 observed in obesity. We propose that SPARC is a newly identified autocrine/paracrine factor that could affect key functions in adipose tissue physiology and pathology.  (+info)

Regional and cellular localization of osteonectin/SPARC expression in connective tissue and cytotrophoblastic layers of human fetal membranes at term. (32/465)

Fetal membranes overlying the cervix in patients prior to and during labour, and within the rupture tear after spontaneous delivery at term, exhibit altered morphology. In this study we report that in comparison to mid-zone fetal membranes biopsies, these regions are characterized by increased expression of the matricellular protein osteonectin or SPARC (Secreted Protein Acidic and Rich in Cysteine). In the reticular layer, the percentage of vimentin positive mesenchymal cells immunoreactive for osteonectin increased in these regions from 3-4% to 25-33% and represented a fraction of the alpha-smooth muscle actin positive myofibroblasts elevated in the same regions. In the fibroblastic layer, the percentage of osteonectin positive cells increased from 1-5% to 8-13%; however, these did not exhibit the same relationship to the alpha-smooth muscle actin positive myofibroblasts in this layer. In the cytotrophoblastic layer the percentage of cytotrophoblastic cells immunoreactive for osteonectin increased from 1% to 6-12%. Elevation of in-situ detectable mRNA was also observed in the same cellular populations in this region. The incidence of cells positive for osteonectin mRNA or protein in the reticular layer correlated with morphological changes. Osteonectin has been implicated in the regulation of extracellular matrix turnover, and its pattern of expression suggests a role in the regional connective tissue and cytotrophoblastic changes proposed to be involved in the cleavage and rupture of fetal membranes.  (+info)