Murine matrix metalloproteinase 9 gene. 5'-upstream region contains cis-acting elements for expression in osteoclasts and migrating keratinocytes in transgenic mice. (1/2998)

Knowledge about the regulation of cell lineage-specific expression of extracellular matrix metalloproteinases is limited. In the present work, the murine matrix metalloproteinase 9 (MMP-9) gene was shown to contain 13 exons, and the 2.8-kilobase pair upstream region was found to contain several common promoter elements including a TATA box-like motif, three GC boxes, four AP-1-like binding sites, an AP-2 site, and three PEA3 consensus sequences that may be important for basic activity of the gene. In order to identify cell-specific regulatory elements, constructs containing varying lengths of the upstream region in front of a LacZ reporter gene were made and studied for expression in transgenic mice generated by microinjection into fertilized oocytes. Analyses of the mice revealed that the presence of sequences between -2722 and -7745 allowed for expression in osteoclasts and migrating keratinocytes, i. e. cells that have been shown to normally express the enzyme in vivo. The results represent the first in vivo demonstration of the location of cell-specific control elements in a matrix metalloproteinase gene and show that element(s) regulating most cell-specific activities of 92-kDa type collagenase are located in the -2722 to -7745 base pair region.  (+info)

Granulocyte/macrophage colony-stimulating factor and interleukin-3 correct osteopetrosis in mice with osteopetrosis mutation. (2/2998)

Although young mice homozygous for the osteopetrosis (op) mutation usually developed prominent osteopetrosis, its severity was markedly reduced in aged op/op mice. This age-associated reversal of osteopetrosis was accompanied by the expansion of bone marrow cavities and increased numbers of tartrate-resistant acid phosphatase (TRAP)-positive cells and of macrophages in the bone marrow. The TRAP-positive cells were mononuclear and developed ruffled borders and numerous vesicles, vacuoles, and granules. Enzyme-linked immunosorbent assay demonstrated a significant elevation of serum granulocyte/ macrophage colony-stimulating factor (GM-CSF) and interleukin (IL)-3 levels in the aged op/op mice. To examine whether GM-CSF and/or IL-3 could correct osteopetrosis in young op/op mice, 5 ng of recombinant murine (rm)GM-CSF and/or 100 ng of rmIL-3 were injected daily into young op/op mice. In these treated young op/op mice, the bone marrow cavities were expanded significantly at 2 weeks after administration, associated with significantly increased numbers of TRAP-positive cells and bone marrow macrophages. TRAP-positive cells increased in number with days after injection. These results suggest that GM-CSF and IL-3 induce the development of osteoclasts to correct osteopetrosis in the op/op mice with aging.  (+info)

Midpalatal suture of osteopetrotic (op/op) mice exhibits immature fusion. (3/2998)

The midpalatal suture was observed histologically in both toothless osteopetrotic (op/op) and normal (control) mice. The normal mice had a mature sutural structure, which consists of a well-developed cartilage cell zone and palatal bone. In contrast, the thickness of the cartilage cell zone was substantially greater in the op/op mice than that in the controls. Moreover, the cartilage cells in the op/op mice were frequently found in the palatal bone as well as in the sutural space, exhibiting an imperfect fusion. It seems that immature fusion at the sutural interface in the op/op mice is related to a decrease in biting or masticatory force accompanied by the failure of tooth eruption in addition to an essential defect in osteoclast differentiation, which is a congenital symptom in op/op mice.  (+info)

A novel role of IL-15 in the development of osteoclasts: inability to replace its activity with IL-2. (4/2998)

IL-15 shares many activities with IL-2 on stimulating lymphocytes, hematopoietic progenitor cells, and macrophages. However, the role of IL-15 in osteoclastogenesis has not been elucidated. The recent finding of abundant IL-15 in rheumatoid arthritis synovial fluids suggested a possible role for this cytokine in the pathological destruction of bone and prompted us to determine whether IL-15 stimulates osteoclast formation. IL-15 stimulated the formation of multinucleated osteoclast-like cells in rat bone marrow cultures. In stroma-free cultures, IL-15 increased the number of mononuclear preosteoclast-like cells in the early stage of osteoclast formation. The stimulation was observed even after treatment with IL-15 for only 24 or 48 h of culture. Moreover, low IL-15 concentration (0.1 ng/ml) strongly increased the level of calcitonin receptor mRNA of mononuclear preosteoclast-like cells. Although IL-15 is known as a potent stimulator of TNF-alpha, its activity was not abolished by addition of anti-TNF-alpha Ab. Interestingly, IL-2 and IL-7, which utilize some IL-15R components, had no effect on osteoclast differentiation, but pretreatment with IL-2 or IL-7 of bone marrow cells before the addition of IL-15 inhibited the enhancing activity of IL-15. In summary, IL-15 has a novel activity to stimulate the differentiation of osteoclast progenitors into preosteoclasts, which cannot be replaced by IL-2 but may use components in common with IL-2R to mediate its effects.  (+info)

Tumor necrosis factor receptor family member RANK mediates osteoclast differentiation and activation induced by osteoprotegerin ligand. (5/2998)

A receptor that mediates osteoprotegerin ligand (OPGL)-induced osteoclast differentiation and activation has been identified via genomic analysis of a primary osteoclast precursor cell cDNA library and is identical to the tumor necrosis factor receptor (TNFR) family member RANK. The RANK mRNA was highly expressed by isolated bone marrow-derived osteoclast progenitors and by mature osteoclasts in vivo. Recombinant OPGL binds specifically to RANK expressed by transfected cell lines and purified osteoclast progenitors. Transgenic mice expressing a soluble RANK-Fc fusion protein have severe osteopetrosis because of a reduction in osteoclasts, similar to OPG transgenic mice. Recombinant RANK-Fc binds with high affinity to OPGL in vitro and blocks osteoclast differentiation and activation in vitro and in vivo. Furthermore, polyclonal Ab against the RANK extracellular domain promotes osteoclastogenesis in bone marrow cultures suggesting that RANK activation mediates the effects of OPGL on the osteoclast pathway. These data indicate that OPGL-induced osteoclastogenesis is directly mediated through RANK on osteoclast precursor cells.  (+info)

Morphological changes in periodontal mechanoreceptors of mouse maxillary incisors after the experimental induction of anterior crossbite: a light and electron microscopic observation using immunohistochemistry for PGP 9.5. (6/2998)

Ruffini nerve endings (mechanoreceptors) in the periodontal ligament (PDL) of mouse incisors were examined to elucidate whether experimentally-induced crossbites cause any changes or abnormalities in their morphology and distribution. Anterior guiding planes were attached to the mandibular incisors of 3-week-old C3H/HeSlc mice. At 3 days and 1, 2, 4, 6, and 8 weeks post-attachment of the appliance, the mice were sacrificed by perfusion fixation. Frozen sagittal cryostat sections of the decalcified maxillary incisors were processed for immunohistochemistry of protein gene product 9.5, followed by histochemical determination of tartrate-resistant acid phosphatase activity to reveal sites of alveolar bone resorption. Despite the absence of bone resorption within the lingual PDL of control mice, distinct resorption sites were seen in the respective regions of the experimental animals. Unlike the controls, many Ruffini endings showing vague and swollen contours, with unusually long and pedunculated micro-projections were observed in the affected lingual PDL of the incisors in the experimental animals with short-term anterior crossbite induction. Club-shaped nerve terminations with few, if any, micro-projections were observed in the lingual PDL of experimental animals with long-term induction, as well as in aged control mouse incisors. Differences in the distribution of Ruffini endings were also observed. These results indicate that changing the direction of the force applied to the PDL results in rapid and prolonged changes in the morphology of Ruffini-like mechanoreceptors.  (+info)

Study of the cell biology and biochemistry of cherubism. (7/2998)

AIMS: To establish whether the multinucleate cells in lesions of patients with cherubism are also osteoclasts and if this is the case whether they were responsive to calcitonin; to carry out cytogenetic studies on two members of the same family affected by cherubism in an attempt to identify any major chromosomal defects; and to perform an in-depth modern biochemical study of four children in the same family. SUBJECTS AND METHODS: Four related children with cherubism were studied. Tissue taken from one of the children at elective decompression of an optic nerve was submitted to in vitro bone resorption studies. Cytogenetic studies were done on two of the children and biochemical studies on all four. RESULTS: The multinucleate cells in the cherubic lesions were shown to be osteoclasts since they synthesised tartrate resistant acid phosphatase, expressed the vitronectin receptor, and resorbed bone. Bone resorption by the cultured multinucleate cells was significantly inhibited by calcitonin. High resolution cytogenetic studies failed to detect any chromosomal abnormalities in two children with cherubism. The biochemistry profile of all four children with cherubism showed that serum calcium, parathyroid hormone, parathyroid related hormone, calcitonin, and alkaline phosphatase were within normal levels. Urine analysis of pyridinium and deoxypyridinium cross links, hydroxyproline, and calcium in relation to urine creatinine were measured to assess bone resorption in these children, and the values were at the upper end of the normal range in all four. CONCLUSIONS: Further studies are required to determine whether calcitonin treatment will control this grossly deforming disease until the time when the physiological changes that occur at puberty rectify the pathology. It is not recommended that biochemical markers of bone resorption are used in isolation to monitor the activity of cherubism in individuals because the results are based on a small number of children and because of reports of marked interindividual variation in the levels of these markers, particularly in children.  (+info)

Promoter structure of mouse RANKL/TRANCE/OPGL/ODF gene. (8/2998)

Receptor activator of NF-kappa B ligand (RANKL)/tumor necrosis factor-related activation induced cytokine (TRANCE)/osteoprotegerin ligand (OPGL)/osteoclast differentiation factor (ODF) is a membrane-bound signal transducer responsible for differentiation and maintenance of osteoclasts. To elucidate the mechanism regulating RANKL/TRANCE/OPGL/ODF gene expression, we cloned the 5'-flanking basic promoter region of the mouse RANKL/TRANCE/OPGL/ODF gene and characterized it by transient transfection studies and genomic Southern blot analysis. Inverted TATA- and CAAT-boxes and a putative Cbfa1/Osf2/AML3 binding domain constituted the basic promoter structure. The repeated half-sites for the vitamin D3 (VitD3) and glucocorticoid receptors were located at -935 and -640, respectively. Transient transfection studies revealed that short-term treatment with 1alpha,25(OH)2 VitD3 or dexamethasone increased luciferase activity up to 204% and 178%, respectively; on the other hand, treatment with dibutyryl cyclic AMP did not affect the promoter activity. Since the expression of Cbfa1/Osf2/AML3 is also regulated by VitD3, 1alpha,25(OH)2 VitD3 might affect RANKL/TRANCE/OPGL/ODF gene expression both directly and indirectly. CpG methylation was observed dominantly in mouse stromal cells, ST2, of a later passage which ceased to support in vitro osteoclastogenesis, suggesting that the methylation status of the CpG loci in the RANKL/TRANCE/OPGL/ODF gene promoter may be one of the influential cis-regulating factors.  (+info)