Characteristics of Z-DNA helices formed by imperfect (purine-pyrimidine) sequences in plasmids. (65/112)

The capacities of three synthetic sequences to adopt left-handed helices were evaluated in recombinant plasmids. The sequences consisted of very short runs of (CG)n (n = 2-4) interspersed with runs of alternating A.T base pairs and/or with regions of non-alternating base pairs. The plasmids were studied by two-dimensional gel electrophoresis to determine the natures of the conformational transitions and their free energies of formation. These results coupled with analyses with chemical (diethyl pyrocarbonate, osmium tetroxide, and bromoacetaldehyde) and enzymatic (S1 nuclease, T7 gene 3 product, and MHhaI) probes indicated that the entire sequence was adopting a left-handed helix in each case. In one of these sequences, Z-DNA formation necessitated the retention of the anti conformation of one of the guanines in a region of non-alternation. In a sequence which contains out-of-phase regions of alternation, our results indicate the formation of a separate left-handed helix in the central (CG)2 region, thus forming two Z-Z junctions. In summary, we conclude that only very short regions of alternating CG are necessary to effect the B to Z transition and that this conformational change can be transmitted through non-alternating regions. A set of empirical rules governing the characteristics of the B to Z transition and the types of left-handed helices in supercoiled plasmids was derived from studies on a systematic series of 17 plasmids.  (+info)

Structural features of the DNA template required for transcription in vitro by yeast RNA polymerase B (II). (66/112)

Yeast RNA polymerase II initiates in vitro transcription at two sites located within the vector DNA and the cloned promoter, on a recombinant plasmid DNA containing the yeast iso1 cytochrome c promoter. Both initiation sites are found within a DNA fragment hypersensitive to osmium tetroxide modification. Using a series of yeast iso1 cytochrome c promoter deletions, we have characterized an upstream DNA sequence required for optimal transcription from this site and shown in this case a correlation between osmium sensitivity and the capacity of RNA polymerase to initiate. However, perturbation of the double helix is not sufficient to generate a transcription initiation site. Insertion of 28 alternating AT residues at the EcoRV site of pBR322 generates an site hypersensitive to osmium tetroxide modification, that does not serve as a transcription start site.  (+info)

Substrate specificity of a mammalian DNA repair endonuclease that recognizes oxidative base damage. (67/112)

The substrate specificity of a calf thymus endonuclease on DNA damaged by UV ligh, ionizing radiation, and oxidizing agents was investigated. End-labeled DNA fragments of defined sequence were used as substrates, and the enzyme-generated scission products were analyzed by using DNA sequencing methodologies. The enzyme was shown to incise damaged DNA at pyrimidine sites. The enzyme incised DNA damaged with UV light, ionizing radiation, osmium tetroxide, potassium permanganate, and hydrogen peroxide at cytosine and thymine sites. The substrate specificity of the calf thymus endonuclease was compared to that of Escherichia coli endonuclease III. Similar pyrimidine base damage specificities were found for both enzymes. These results define a highly conserved class of enzymes present in both procaryotes and eucaryotes that may mediate an important role in the repair of oxidative DNA damage.  (+info)

Separation of damage specific DNA endonuclease activities present in calf thymus. (68/112)

A DNA endonuclease activity present in calf thymus specific for incision on DNA damaged by ultraviolet light, osmium tetroxide, potassium permanganate, hydrogen peroxide and acid has been purified from whole cell extracts. The enzymatic activity was heterogeneous both with regard to molecular mass and charge. The molecular mass of the enzyme varied from 25 to 35 kDa, but the different enzymatic species appeared to possess similar activities. The enzymes acted equally well on damage in supercoiled and relaxed forms of DNA. It further had a narrow optimum with regard to salt concentrations, the optimum activity being observed at a concentration of KCl from 40 to 65 mM.  (+info)

Formation of cytosine glycol and 5,6-dihydroxycytosine in deoxyribonucleic acid on treatment with osmium tetroxide. (69/112)

OsO4 selectively forms thymine glycol lesions in DNA. In the past, OsO4-treated DNA has been used as a substrate in studies of DNA repair utilizing base-excision repair enzymes such as DNA glycosylases. There is, however, no information available on the chemical identity of other OsO4-induced base lesions in DNA. A complete knowledge of such DNA lesions may be of importance for repair studies. Using a methodology developed recently for characterization of oxidative base damage in DNA, we provide evidence for the formation of cytosine glycol and 5,6-dihydroxycytosine moieties, in addition to thymine glycol, in DNA on treatment with OsO4. For this purpose, samples of OsO4-treated DNA were hydrolysed with formic acid, then trimethylsilylated and analysed by capillary gas chromatography-mass spectrometry. In addition to thymine glycol, 5-hydroxyuracil (isobarbituric acid), 5-hydroxycytosine and 5,6-dihydroxyuracil (isodialuric acid or dialuric acid) were identified in OsO4-treated DNA. It is suggested that 5-hydroxyuracil was formed by formic acid-induced deamination and dehydration of cytosine glycol, which was the actual oxidation product of the cytosine moiety in DNA. 5-Hydroxycytosine obviously resulted from dehydration of cytosine glycol, and 5,6-dihydroxyuracil from deamination of 5,6-dihydroxycytosine. This scheme was supported by the presence of 5-hydroxyuracil, uracil glycol and 5,6-dihydroxyuracil in OsO4-treated cytosine. Treatment of OsO4-treated cytosine with formic acid caused the complete conversion of uracil glycol into 5-hydroxyuracil. The implications of these findings relative to studies of DNA repair are discussed.  (+info)

(A-T)n tracts embedded in random sequence DNA--formation of a structure which is chemically reactive and torsionally deformable. (70/112)

Alternating d(A-T)n sequences which are contiguous with DNA of effectively random sequence have an abnormal conformation in linear DNA molecules. These regions are strongly reactive towards chemical modification by osmium tetroxide, and are preferentially cleaved by micrococcal nuclease. Both the chemical modification and the enzymic cutting occur uniformly through the alternating tract, and there is no evidence for enzyme or chemical sensitivity in the interfaces between the tract and DNA of normal conformation. These reactivities have a requirement for an alternating sequence. In addition to chemical reactivity, alternating (A-T)n sequences exhibit anomalously small twist changes on cruciform formation, suggesting that the pre-extruded DNA is underwound. We propose that the alternating sequences adopt an altered conformation which is subject to easy torsional deformation.  (+info)

Thymine glycols and urea residues in M13 DNA constitute replicative blocks in vitro. (71/112)

Thymine glycols were produced in M13 DNA in a concentration dependent manner by treating the DNA with osmium tetroxide (OsO4). For the formation of urea-containing M13 DNA, OsO4-oxidized DNA was hydrolyzed in alkali (pH 12) to convert the thymine glycols to urea residues. With both thymine glycol- and urea-containing M13 DNA, DNA synthesis catalyzed by Escherichia coli DNA polymerase I Klenow fragment was decreased in proportion to the number of damages present in the template DNA. Sequencing gel analysis of the products synthesized by E. coli DNA polymerase I and T4 DNA polymerase showed that DNA synthesis terminated opposite the putative thymine glycol site and at one nucleotide before the putative urea site. Substitution of manganese for magnesium in the reaction mix resulted in increased processivity of DNA synthesis so that a base was incorporated opposite urea. With thymine glycol-containing DNA, processivity in the presence of manganese was strongly dependent on the presence of a pyrimidine 5' to the thymine glycol in the template.  (+info)

Confocal scanning light microscopy of the Escherichia coli nucleoid: comparison with phase-contrast and electron microscope images. (72/112)

The nucleoid of living and OsO4- or glutaraldehyde-fixed cells of Escherichia coli strains was studied with a phase-contrast microscope, a confocal scanning light microscope, and an electron microscope. The trustworthiness of the images obtained with the confocal scanning light microscope was investigated by comparison with phase-contrast micrographs and reconstructions based on serially sectioned material of DNA-containing and DNA-less cells. This comparison showed higher resolution of the confocal scanning light microscope as compared with the phase-contrast microscope, and agreement with results obtained with the electron microscope. The effects of fixation on the structure of the nucleoid were studied in E. coli B/r H266. Confocal scanning light micrographs and electron microscopic reconstructions showed that the shape of the nucleoid remained similar after OsO4 or glutaraldehyde fixation; however, the OsO4 nucleoid appeared to be somewhat smaller and more centralized within the cell.  (+info)