Hmo1p, a high mobility group 1/2 homolog, genetically and physically interacts with the yeast FKBP12 prolyl isomerase. (1/380)

The immunosuppressive drugs FK506 and rapamycin bind to the cellular protein FKBP12, and the resulting FKBP12-drug complexes inhibit signal transduction. FKBP12 is a ubiquitous, highly conserved, abundant enzyme that catalyzes a rate-limiting step in protein folding: peptidyl-prolyl cis-trans isomerization. However, FKBP12 is dispensible for viability in both yeast and mice, and therefore does not play an essential role in protein folding. The functions of FKBP12 may involve interactions with a number of partner proteins, and a few proteins that interact with FKBP12 in the absence of FK506 or rapamycin have been identified, including the ryanodine receptor, aspartokinase, and the type II TGF-beta receptor; however, none of these are conserved from yeast to humans. To identify other targets and functions of FKBP12, we have screened for mutations that are synthetically lethal with an FKBP12 mutation in yeast. We find that mutations in HMO1, which encodes a high mobility group 1/2 homolog, are synthetically lethal with mutations in the yeast FPR1 gene encoding FKBP12. Deltahmo1 and Deltafpr1 mutants share two phenotypes: an increased rate of plasmid loss and slow growth. In addition, Hmo1p and FKBP12 physically interact in FKBP12 affinity chromatography experiments, and two-hybrid experiments suggest that FKBP12 regulates Hmo1p-Hmo1p or Hmo1p-DNA interactions. Because HMG1/2 proteins are conserved from yeast to humans, our findings suggest that FKBP12-HMG1/2 interactions could represent the first conserved function of FKBP12 other than mediating FK506 and rapamycin actions.  (+info)

Preventive effects of dehydroepiandrosterone acetate on the fatty liver induced by orotic acid in male rats. (2/380)

Preventive effects of dehydroepiandrosteone acetate (DHEA-A) and clofibrate (positive control substance) on the fatty liver induced by orotic acid (OA) were examined on the male Sprague-Dawley rats fed a high sucrose based diet containing 1% OA and this diet further mixed with 0.5% DHEA-A or 0.5% clofibrate for 2 weeks. Numerous lipid droplets were observed in the hepatocytes of the rats treated with OA alone, but not in those treated with DHEA-A or clofibrate. In comparison to the group with OA alone, the DHEA-A or clofibrate treated rats showed a larger relative liver weight (to body weight) which was accompanied by increased peroxisomes in the hepatocytes. These results indicate that DHEA-A, as well as clofibrate, may prevent OA-induced fatty liver.  (+info)

Orotate decreases the inhibitory effect of ethanol on galactose elimination in the perfused rat liver. (3/380)

1. The galactose-elimination rate in perfused livers from starved rats was decreased in the presence of ethanol (2-28mM) to one-third of the control values. Orotate injections partly reversed the effect of ethanol, so that the galactose-elimination rate was about two-thirds of the control values. Orotate alone had no effect on the galactose-elimination rate. 2. Ethanol increased [galactose 1-phosphate] and [UDP-galactose], and decreased (UDP-glucose] and [UTP], both with and without orotate. Orotate increased [UTP], [UDP-galactose], both with and without ethanol. The increase of [galactose 1-phosphate] in the presence of ethanol was inhibited by orotate. Orotate alone had no appreciable effect on [galactose 1-phosphate]. 3. Both the effect of ethanol and that of orotate on the galactose-elimination rate can be accounted for by assuming inhibition of galactokinase by galactose 1-phosphate with Ki about 0.2mM, the inhibition being either non-competitive or uncompetitive. 4. The primary effect of ethanol seems to be inhibition of UDP-glucose epimerase (EC, followed by accumulation of UDP-galactose, trapping of UDP-glucose and increase of [galactose 1-phosphate]. Orotate decreased the effect of ethanol, probably by increasing [UDP-glucose].  (+info)

Optimization of allopurinol challenge: sample purification, protein intake control, and the use of orotidine response as a discriminative variable improve performance of the test for diagnosing ornithine carbamoyltransferase deficiency. (4/380)

BACKGROUND: The diagnosis of heterozygosity for X-linked ornithine carbamoyltransferase (OCT) deficiency has usually been based on measurement of the increase of orotate and orotidine excretion after an allopurinol load. We examined the choices of analyte, cutoff, and test conditions to obtain maximal test accuracy. METHODS: Urine orotate/orotidine responses to allopurinol load in 37 children (13 OCT-deficient and 24 non-OCT-deficient) and 24 women (7 at risk for carrier status and 17 not related to OCT-deficient children) were analyzed by liquid chromatography after sample purification by anion-exchange chromatography. Diagnostic accuracy was evaluated by nonparametric ROC curves. RESULTS: Sample purification was necessary to prevent interferences. Orotate and orotidine excretion increased with increased protein intake during the test. At a cutoff of 8 mmol orotidine/mol creatinine, sensitivity was 1.0 and specificity was 0. 92 in mild forms of OCT deficiency. Results in monoplex carrier women may differ greatly from those expected because of the genetics of this deficiency. CONCLUSIONS: Standardization of protein intake is required in the allopurinol loading test. A negative response in the face of clinical suspicion should be followed with a repeat test during a protein intake not <2.5 g x kg-1 x day-1. Measurements of orotidine provide better clinical sensitivity than measurements of orotate.  (+info)

Development of resistance during the early stages of experimental liver carcinogenesis. (5/380)

The present study was designed to determine whether the resistant phenotype is acquired at the initiated cell stage itself or requires further exposure to a promoting regimen to express resistance. Male Fischer 344 rats were initiated with diethylnitrosamine (DENA) (200 mg/kg i.p.) and were subjected to either no further treatment or to the resistant hepatocyte (RH) model of liver tumor promotion. Six weeks later, the resistance of the focal lesions generated in these two groups to the mitoinhibitory effects of 2-acetylaminofluorene (2-AAF) was determined by subjecting the rats to two-thirds partial hepatectomy (PH) in the presence of a mitoinhibitory dose of 2-AAF (5 mg/kg i.p.) given at the time of PH. Labeling index was determined by administering multiple injections of [(3)H]thymidine. All rats were killed 48 h post-PH. While only a small percentage (23%) of the glutathione S-transferase-positive foci generated by DENA in the absence of an exogenous liver tumor promoting regimen were resistant to the mitoinhibitory effects of 2-AAF, a majority (85%) of the foci became resistant to 2-AAF following exposure to the RH model of liver tumor promotion. Further, initiated rats exposed to either 2-AAF or to CCl(4) alone, the two components of the RH model, resulted in 71% of the foci being resistant to the mitoinhibitory effects of 2-AAF. Similar patterns of results were obtained when the resistance of the foci to the mitoinhibitory effects of orotic acid, a liver tumor promoter and an inhibitor of DNA synthesis in normal hepatocytes, was monitored. These results suggest that the majority of initiated hepatocytes are not of resistant phenotype, however, they have acquired a unique ability to express resistance upon exposure to certain agents such as 2-AAF and CCl(4) or to a promoting regimen such as the RH model of liver tumor promotion.  (+info)

Slk19p is a centromere protein that functions to stabilize mitotic spindles. (6/380)

We have identified a novel centromere-associated gene product from Saccharomyces cerevisiae that plays a role in spindle assembly and stability. Strains with a deletion of SLK19 (synthetic lethal Kar3p gene) exhibit abnormally short mitotic spindles, increased numbers of astral microtubules, and require the presence of the kinesin motor Kar3p for viability. When cells are deprived of both Slk19p and Kar3p, rapid spindle breakdown and mitotic arrest is observed. A functional fusion of Slk19p to green fluorescent protein (GFP) localizes to kinetochores and, during anaphase, to the spindle midzone, whereas Kar3p-GFP was found at the nuclear side of the spindle pole body. Thus, these proteins seem to play overlapping roles in stabilizing spindle structure while acting from opposite ends of the microtubules.  (+info)

Genetic control of telomere integrity in Schizosaccharomyces pombe: rad3(+) and tel1(+) are parts of two regulatory networks independent of the downstream protein kinases chk1(+) and cds1(+). (7/380)

The Schizosaccharomyces pombe checkpoint gene named rad3(+) encodes an ATM-homologous protein kinase that shares a highly conserved motif with proteins involved in DNA metabolism. Previous studies have shown that Rad3 fulfills its function via the regulation of the Chk1 and Cds1 protein kinases. Here we describe a novel role for Rad3 in the control of telomere integrity. Mutations in the rad3(+) gene alleviated telomeric silencing and produced shortened lengths in the telomere repeat tracts. Genetic analysis revealed that the other checkpoint rad mutations rad1, rad17, and rad26 belong to the same phenotypic class with rad3 with regard to control of the telomere length. Of these mutations, rad3 and rad26 have a drastic effect on telomere shortening. tel1(+), another ATM homologue in S. pombe, carries out its telomere maintenance function in parallel with the checkpoint rad genes. Furthermore, either a single or double disruption of cds1(+) and chk1(+) caused no obvious changes in the telomeric DNA structure. Our results demonstrate a novel role of the S. pombe ATM homologues that is independent of chk1(+) and cds1(+).  (+info)

Down-regulation of rat hepatic microsomal cytochromes P-450 in microvesicular steatosis induced by orotic acid. (8/380)

Microvesicular steatosis is an important component of the overall pathogenesis of drug-mediated liver injury. Although mitochondrial damage has a role in the development of microvesicular steatosis, the consequences of fatty change for hepatic gene function are unclear. The present study was undertaken to evaluate hepatic cytochrome P-450 (CYP) function in a rat model of microvesicular steatosis produced by the intake of diets containing 1% orotic acid (OA) that were administered for 5, 10, or 21 days. Hepatic triglyceride levels were increased to 3-fold of control after 5 days and were elevated further at 10 and 21 days. Cholesterol and phospholipid contents were increased after 10 and 21 days but not by 5 days of feeding. Microsomal androst-4-ene-3,17-dione hydroxylation activities mediated by CYP2C11 (16alpha-hydroxylation) and CYP3A2 (6beta-hydroxylation) were decreased in liver from OA-fed rats for only 5 days, whereas CYP2A1/2-mediated steroid 7alpha-hydroxylation was decreased after 10 days; these observations were complemented by immunoblot analysis that demonstrated the impaired expression of the corresponding CYP proteins. CYP2C11 mRNA, the major CYP in male rat liver, was down-regulated in steatotic liver to 52 +/- 4% of control. Thus, microvesicular steatosis induced by short-term intake of OA-containing diets is histologically similar to that produced by hepatotoxic drugs and produces the rapid down-regulation of constitutive CYPs in rat liver. Analogous processes of lipid deposition in human liver after drug- or disease-related injury could precipitate adverse effects during subsequent drug therapy.  (+info)