Filobacillus milensis gen. nov., sp. nov., a new halophilic spore-forming bacterium with Orn-D-Glu-type peptidoglycan. (73/1042)

A spore-forming, halophilic bacterium was isolated from surface sediment located on the beach of Palaeochori Bay near to a shallow water hydrothermal vent area, Milos, Greece. The bacterium, designated SH 714T, consisted of motile, strictly aerobic rods which contained an Orn-D-Glu type murein and a G+C content of 35 mol%. Thin sections showed a cell wall typical for Gram-positive bacteria; the peptidoglycan layer, however, was very thin. The Gram-reaction of the organism was negative. Comparative 16S rRNA gene sequencing demonstrated that the isolate represents a new line of descent within the spore-forming rods branching at the periphery of the rRNA group 1 Bacillus (Bacillus sensu stricto). The nearest phylogenetic neighbours of the unknown bacterium were Bacillus haloalkaliphilus, Marinococcus albus and Halobacillus species. Based on phylogenetic and phenotypic evidence it is proposed that the unknown bacterium be classified as Filobacillus milensis gen. nov., sp. nov. The type strain is SH 714T (= DSM 13259T = ATCC 700960T).  (+info)

Argpyrimidine, a blue fluorophore in human lens proteins: high levels in brunescent cataractous lenses. (74/1042)

PURPOSE: To determine whether the human lens contains argpyrimidine, a modification of arginine by methylglyoxal, to establish how argpyrimidine content relates to lens aging and cataract formation. METHODS: A monoclonal antibody was used to measure argpyrimidine by a competitive ELISA in water soluble (WS) and insoluble (WI) lens fractions from young, aged, nuclear cataractous, and brunescent cataractous lenses. Brunescent cataractous lens proteins were digested by enzymes, the digest was subjected to HPLC, and the eluate was analyzed for argpyrimidine. Lens proteins from aged lenses (from donors 65 to 80 years of age) were fractionated on a Sephadex G-200 column, and the crystallins were tested for argpyrimidine. RESULTS: The competitive ELISA showed two to three times as much argpyrimidine in water-insoluble proteins as in water-soluble proteins. Although no clear cut increase with the age of the lens donors in either the water-soluble or the insoluble protein fractions was found, the argpyrimidine levels in brunescent cataractous lenses were significantly higher (254.0 +/- 155 pmol/mg protein, P < 0.005) than in age-matched, aged (16.1 +/- 8 pmol/mg) or nuclear cataractous lenses (49.0 +/- 26 pmol/mg). Lenses from diabetic individuals showed a modest increase (50.3 pmol/mg) compared with age-matched normal lenses. HPLC results provided additional evidence that human lenses contain argpyrimidine. Western blotting experiments showed consistently stronger reactions with cataractous lens proteins than those from noncataractous lenses, and argpyrimidine was found in both crystallin monomers and polymers. All crystallins and several cross-linked high-molecular-weight aggregates reacted with the antibody to argpyrimidine, but a protein of approximately 28 kDa in the alpha-crystallin fraction displayed the greatest immunoreactivity. CONCLUSIONS: Methylglyoxal modifies arginine within the human lens, and the changes occur at a much higher rate in brunescent lens proteins than in either nuclear cataractous or normal lenses. All crystallins contained argpyrimidine and covalently cross-linked aggregates. This is the first report of immunologic evidence for an arginine modification in the human lens by a physiologically important alpha-dicarbonyl compound.  (+info)

Adverse effects of excess lysine in calves. (75/1042)

Two main trials and three preliminary experiments were conducted in order to examine adverse effects of excess lysine in 140- to 150-kg Holstein bull calves. The animals had been trained to maintain reflex closure of the reticular groove after weaning and were fed a corn and soybean meal diet. In Trial 1 (n = 30), administration via the reticular groove of 0 to 64 g/d of lysine as L-lysine monohydrochloride resulted in a linear decrease in DMI and N utilization efficiency, with notably lower values at 64 g/d, although ADG and gain/feed ratio were not affected. Plasma arginine and ornithine did not decrease but rather increased over that range. Free lysine but not free arginine was detected in urine. In addition, free ornithine was excreted into urine only when 64 g/d was administered. Unexpectedly, severe but transient diarrhea occurred when 64 g/d of lysine were administered. Preliminary experiments revealed that a single administration of more than 32 g of lysine as L-lysine monohydrochloride could result in diarrhea, and the diarrhea was proven to be due to the lysine itself and not to the HCl portion. In Trial 2 (n = 15), a single administration of 40 or 60 g of lysine as L-lysine monohydrochloride resulted in increased fecal excretion of free lysine and ornithine, especially the latter, although free arginine was not detected in feces. These results suggested that diarrhea could occur almost concurrently with an imbalance in calves when 64 g/d of lysine was administered. However, lysine did not antagonize arginine at that level or at lower levels. The remarkable increase in fecal ornithine may be somehow related to the development of diarrhea from excess lysine.  (+info)

The Plasmodium falciparum bifunctional ornithine decarboxylase, S-adenosyl-L-methionine decarboxylase, enables a well balanced polyamine synthesis without domain-domain interaction. (76/1042)

In the human malaria parasite Plasmodium falciparum (Pf), polyamines are synthesized by a bifunctional enzyme that possesses both ornithine decarboxylase (ODC) and S-adenosyl-l-methionine decarboxylase (AdoMetDC) activities. The mature enzyme consists of the heterotetrameric N-terminal AdoMetDC and the C-terminal dimeric ODC, which results in the formation of a heterotetrameric complex. For the native bifunctional protein a half-life longer than 2 h was determined, which is in contrast to the extreme short half-life of its mammalian monofunctional counterparts. The biological advantage of the plasmodial bifunctional ODC/AdoMetDC might be that the control of polyamine synthesis is achieved by only having to regulate the abundance and activity of one protein. An interesting feature in the regulation of the bifunctional protein is that putrescine inhibits PfODC activity approximately 10-fold more efficiently than the mammalian ODC activity, and in contrast to the mammalian AdoMetDC the activity of the PfAdoMetDC domain is not stimulated by the diamine. To analyze post-translational processing, polymerization, and domain-domain interactions, several mutant proteins were generated that have single mutations in either the PfODC or PfAdoMetDC domains. The exchange of amino acids essential for the activity of one domain had no effect on the enzyme activity of the other domain. Even prevention of the post-translational cleavage of the AdoMetDC domain or ODC dimerization and thus the interference with the folding of the protein hardly affected the activity of the partner domain. In addition, inhibition of the activity of the PfODC domain had no effect on the activity of the PfAdoMetDC domain and vice versa. These results demonstrate that no domain-domain interactions occur between the two enzymes of the bifunctional PfODC/AdoMetDC and that both enzymatic activities are operating as independent catalytic sites that do not affect each other.  (+info)

Involvement of a transformylase enzyme in siderophore synthesis in Pseudomonas aeruginosa. (77/1042)

Fluorescent pseudomonads produce yellow-green siderophores when grown under conditions of iron starvation. Here, the characterization of the pvdF gene, which is required for synthesis of the siderophore pyoverdine by Pseudomonas aeruginosa strain PAO1, is described. A P. aeruginosa pvdF mutant was constructed and found to be defective for production of pyoverdine, demonstrating the involvement of PvdF in pyoverdine synthesis. Transcription analysis showed that expression of pvdF was regulated by the amount of iron in the growth medium, consistent with its role in siderophore production. DNA sequencing showed that pvdF gives rise to a protein of 31 kDa that has similarity with glycinamide ribonucleotide transformylase (GART) enzymes involved in purine synthesis from a wide range of eukaryotic and prokaryotic species. Chemical analyses of extracts from wild-type and pvdF mutant bacteria indicated that the PvdF enzyme catalyses the formylation of N(5)-hydroxyornithine to give rise to N(5)-formyl-N(5)-hydroxyornithine, a component of pyoverdine. These studies enhance understanding of the enzymology of pyoverdine synthesis, and to the best of the authors' knowledge provide the first example of involvement of a GART-type enzyme in synthesis of a secondary metabolite.  (+info)

Functional and evolutionary relationship between arginine biosynthesis and prokaryotic lysine biosynthesis through alpha-aminoadipate. (78/1042)

Our previous studies revealed that lysine is synthesized through alpha-aminoadipate in an extremely thermophilic bacterium, Thermus thermophilus HB27. Sequence analysis of a gene cluster involved in the lysine biosynthesis of this microorganism suggested that the conversion from alpha-aminoadipate to lysine proceeds in a way similar to that of arginine biosynthesis. In the present study, we cloned an argD homolog of T. thermophilus HB27 which was not included in the previously cloned lysine biosynthetic gene cluster and determined the nucleotide sequence. A knockout of the argD-like gene, now termed lysJ, in T. thermophilus HB27 showed that this gene is essential for lysine biosynthesis in this bacterium. The lysJ gene was cloned into a plasmid and overexpressed in Escherichia coli, and the LysJ protein was purified to homogeneity. When the catalytic activity of LysJ was analyzed in a reverse reaction in the putative pathway, LysJ was found to transfer the epsilon-amino group of N(2)-acetyllysine, a putative intermediate in lysine biosynthesis, to 2-oxoglutarate. When N(2)-acetylornithine, a substrate for arginine biosynthesis, was used as the substrate for the reaction, LysJ transferred the delta-amino group of N(2)-acetylornithine to 2-oxoglutarate 16 times more efficiently than when N(2)-acetyllysine was the amino donor. All these results suggest that lysine biosynthesis in T. thermophilus HB27 is functionally and evolutionarily related to arginine biosynthesis.  (+info)

Methanococcus jannaschii generates L-proline by cyclization of L-ornithine. (79/1042)

Cell extracts of Methanococcus jannaschii have been shown to readily convert L-ornithine to L-proline. This cyclization reaction proceeds with the loss of only the C-2 nitrogen, as has been documented for ornithine cyclodeaminase (EC 4.3.1.12). Since no gene homologous to that coding for ornithine cyclodeaminase is present in the genome of M. jannaschii, these results indicate that proline biosynthesis in M. jannaschii is accomplished by a previously unrecognized enzyme.  (+info)

Isolation and characterization of an ornithine-containing lipid from Desulfovibrio gigas. (80/1042)

The isolation and characterization of an ornithine-containing lipid obtained from Desulfovibrio gigas are reported. The general structure for this aminolipid is represented by NH2-CH2-(CH)2-CHNH(CO-CH2CH(O-COR2)-R1)-COOH, where R1 represents 3-hydroxy palmitate linked through an amide bond to the alpha-amino group of ornithine, and R2 represents a complex variety of fatty acids esterified to the hydroxyl group of 3-hydroxy palmitate. Fatty acids characterized were n-C14:0 (21%), iso-C14:0 (14%) anteiso-C15:0 (43%), n-C16:0 (2%), n-C18:0 (8%), and n-C 18:1 (11%). The quantitative relationships between aminolipid and phospholipids showed the aminolipid to represent the major polar lipid. Isolation of the cytoplasmic and outer membranes of D. gigas showed the aminolipid to be evenly distributed between both membrane fractions, suggesting a compensatory role in phospholipid-deficient membranes.  (+info)