Mechanism of decreased adenosine protection in reperfusion injury of aging rats. (41/1042)

The purpose of this study was to determine whether the protective effects of adenosine on myocardial ischemia-reperfusion injury are altered with age, and if so, to clarify the mechanisms that underlie this change related to nitric oxide (NO) derived from the vascular endothelium. Isolated perfused rat hearts were exposed to 30 min of ischemia and 60 min of reperfusion. In the adult hearts, administration of adenosine (5 micromol/l) stimulated NO release (1. 06 +/- 0.19 nmol. min(-1). g(-1), P < 0.01 vs. vehicle), increased coronary flow, improved cardiac functional recovery (left ventricular developed pressure 79 +/- 3.8 vs. 57 +/- 3.1 mmHg in vehicle, P < 0.001; maximal rate of left ventricular pressure development 2,385 +/- 103 vs. 1,780 +/- 96 in vehicle, P < 0.001), and reduced myocardial creatine kinase loss (95 +/- 3.9 vs. 159 +/- 4.6 U/100 mg protein, P < 0.01). In aged hearts, adenosine-stimulated NO release was markedly reduced (+0.42 +/- 0.12 nmol. min(-1). g(-1) vs. vehicle), and the cardioprotective effects of adenosine were also attenuated. Inhibition of NO production in the adult hearts significantly decreased the cardioprotective effects of adenosine, whereas supplementation of NO in the aged hearts significantly enhanced the cardioprotective effects of adenosine. The results show that the protective effects of adenosine on myocardial ischemia-reperfusion injury are markedly diminished in aged animals, and that the loss in NO release in response to adenosine may be at least partially responsible for this age-related alteration.  (+info)

Enhanced intestinal synthesis of polyamines from proline in cortisol-treated piglets. (42/1042)

This study was conducted to determine a role for cortisol in regulating intestinal ornithine decarboxylase (ODC) activity and to identify the metabolic sources of ornithine for intestinal polyamine synthesis in suckling pigs. Thirty-two 21-day-old suckling pigs were randomly assigned to one of four groups with eight animals each and received daily intramuscular injections of vehicle solution (sesame oil; control), hydrocortisone 21-acetate (HYD; 25 mg/kg body wt), RU-486 (10 mg/kg body wt, a potent blocker of glucocorticoid receptors), or HYD plus RU-486 for two consecutive days. At 29 days of age, pigs were killed for preparation of jejunal enterocytes. The cytosolic fraction was prepared for determining ODC activity. For metabolic studies, enterocytes were incubated for 45 min at 37 degrees C in 2 ml of Krebs-bicarbonate buffer (pH 7.4) containing 1 mM [U-(14)C]arginine, 1 mM [U-(14)C]ornithine, 1 mM [U-(14)C]glutamine, or 1 mM [U-(14)C]proline plus 1 mM glutamine. Cortisol administration increased intestinal ODC activity by 230%, polyamine (putrescine, spermidine, and spermine) synthesis from ornithine and proline by 75-180%, and intracellular polyamine concentrations by 45-83%. Polyamine synthesis from arginine was not detected in enterocytes of control pigs but was induced in cells of cortisol-treated pigs. There was no detectable synthesis of polyamines from glutamine in enterocytes of all groups of pigs. The stimulating effects of cortisol on intestinal ODC activity and polyamine synthesis were abolished by coadministration of RU-486. Our data indicate that an increase in plasma cortisol concentrations stimulates intestinal polyamine synthesis via a glucocorticoid receptor-mediated mechanism and that proline (an abundant amino acid in milk) is a major source of ornithine for intestinal polyamine synthesis in suckling neonates.  (+info)

Occurrence of polyamines in coliphages T5, phiX174 and in phage-infected bacteria. (43/1042)

The polyamine spermidine and the diamine putrescine have been detected in coliphages T5 and phiX174. Polyamines were identified by thin-layer chromatography and mass-spectrometry of dansyl derivatives, as well as by ion-exchange chromatography. In phiX174 phages, polyamines were sufficient to neutralize 0.5% of DNA phosphates. The polyamine content of T5 phages depended on growth media and purification procedures, but at least 1% of DNA phosphates were neutralized by polyamines. After infection, an increase in cellular polyamine was noticed. This increase paralleled variations in ornithine decarboxylase activity.  (+info)

Genetic characterization of the metK locus in Escherichia coli K-12. (44/1042)

Three independently isolated metK mutants have been shown to have leisions lying between speB and glc near 57 min on the Escherichia coli chromosome. Two deletions result in a lack of the metC gene product but neither extends into the metK glc region. The three metK mutations are recessive to the wild-type allele carried on the KLF16 episome.  (+info)

Specialized peptide transport system in Escherichia coli. (45/1042)

Trileucine is utilized as a source of leucine for growth of strains of Escherichia coli K-12 that are deficient in the oligopeptide transport system (Opp). Trithreonine is toxic to E. coli K-12. Opp- mutants of E. coli K-12 retain complete sensitivity to this tripeptide. Moreover, E. coli W, which is resistant to trithreonine, can utlize this tripeptide as a threonine source and this capability is fully maintained in E. coli W (Opp-). A spontaneous trithreonine-resistant mutant of E. coli K-12 (Opp-) has been isolated that has an impaired growth response to trileucine and is resistant to trithreonine. Trileucine competes with the uptake of trithreonine as measured by its ability to relieve trithreonine toxicity in E. coli K-12. It is concluded that trileucine as well as trithreonine are transported into E. coli K-12 or W by a common uptake system that is distinct from the Opp system. Trimethionine can act as a competitor of trileucine or trithreonine-supported growth and as an antagonist of trithreonine toxicity in Opp- mutants. It is concluded that trimethionine is recognized by the trileucine-trithreonine transport system. Trithreonine, trimethionine, and trileucine are also transported by the Opp system, as they all relieve triornithine toxicity towards E. coli W and compete with tetralysine utilization as lysine source for growth of a lysine auxotroph of this strain.  (+info)

Multiplicity of oligopeptide transport systems in Escherichia coli. (46/1042)

The ability of Escherichia coli K-12 4212 to utilize a variety of oligopeptides as sources of required amino acids was examined. Triornithine-resistant mutants of this strain were oligopeptide permease deficient (Opp-) as judged by their inability to utilize (Lys)3 and (Lys)4 as sources of lysine and their resistance to the toxic tripeptide (Val)3. These same mutants were able to grow when Met-Met-Met, Met-Gly-Met, Met-Gly-Gly, Gly-Met-Gly, Gly-Gly-Met, Gly-Met-Met, Met-Met-Gly, or Leu-Leu-Leu were supplied in place of the requisite amino acid. The system mediating the uptake of these peptides, herein designated Opr I, was not able to transport N-alpha-acetylated peptides, nor the tetrapeptides Met-Gly-Met-Met, Met-Met-Gly-Met, or Met-Met-Met-Gly. Competition experiments indicated that trimethionine and trileucine enter E. coli K-12 via either Opp or Opr I. Analogous results were found using the methionine, leucine-requiring auxotroph E. coli B163. It appears that more than one oligopeptide transport system exists in E. coli and that the system mediating peptide uptake is complex.  (+info)

Postnatal changes of plasma amino acids in suckling pigs. (47/1042)

Amino acids, ammonia, urea, orotate, and nitrate plus nitrite (stable oxidation products of nitric oxide) were determined in plasma of 1- to 21-d-old suckling pigs. Jugular venous blood samples were obtained from pigs at 1, 3, 7, 14, and 21 d of age for analysis of plasma amino acids and metabolites by HPLC and enzymatic methods. Plasma concentrations of arginine and its immediate precursors (citrulline and ornithine) decreased (P < 0.01) progressively (20 to 41%) with increasing age from 3 to 14 d. Plasma concentrations of glutamine declined (P < 0.01) progressively (10 to 31%) during the 1st wk of life. Plasma concentrations of branched-chain amino acids, threonine, and alanine decreased (P < 0.01) (5 to 12%) in 14- and 21-d-old pigs, compared with 1- and 3-d-old pigs. There were no postnatal changes (P > 0.05) in plasma concentrations of other amino acids. Plasma concentrations of ammonia increased (P < 0.01) by 18 and 46%, whereas those of nitrate plus nitrite decreased (P < 0.01) by 16 and 29%, in 7- and 14-d-old pigs, respectively, compared with 1- to 3-d-old pigs. Because arginine plays a crucial role in ammonia detoxification via the hepatic urea cycle and is the physiological substrate for nitric oxide synthesis, our results of the decreased plasma concentrations of arginine and nitrate plus nitrite, as well as the increased plasma ammonia concentration, indicate a hitherto unrecognized deficiency of arginine in 7- to 21-d-old suckling pigs. Arginine is an essential amino acid for piglets and has a great potential to enhance neonatal growth; therefore, further studies are necessary to elucidate the mechanism responsible for arginine deficiency in sow-reared piglets and to identify hormonal and metabolic means for improving neonatal arginine nutrition and growth.  (+info)

Accumulation of arginine precursors in Escherichia coli: effects on growth, enzyme repression, and application to the forward selection of arginine auxotrophs. (48/1042)

The accumulation or ornithine, citrulline, and possibly acetylornithine by Escherichia coli K-12 arginineless mutants provided with acetylarginine as source of arginine causes severe growth inhibition. This occurs under conditions where comparable derivatives of E. coli W (Bollon and Vogel, 1973) show little or no growth inhibition. The same conditions, which have been reported to cause noncorrelative synthesis of acetylornithinase and argininosuccinase in E. coli W (Bollon and Vogel, 1973), do not alter the correlative pattern of enzyme synthesis observed in E. coli K-12. Moreover, previously reported effects of ornithine and citrulline on repression of the arginine regulon in E. coli W are not observed in the K-12 strains examined. The bearing of these observations on possible differences between the mechanism of enzyme repression operating in the two types of strains cannot yet be fully evaluated; it is, however, clear that considerable care should be exercised before extrapolating the results obtained with one type of strain to the other one. The particularly strong inhibition of acetylarginine utilization exerted by ornithine in E. coli K-12 allows the forward selection of several classes of arginine auxotrophs from strains deficient in carbamoylphosphate biosynthesis and thus capable of ornithine accumulation. Possible applications of this technique to the genetic analysis of the bipolar argECBH operon are discussed.  (+info)