Interactions between Streptococcus suis serotype 2 and different epithelial cell lines. (73/1961)

Streptococcus suis is an important swine pathogen responsible for cases of sudden death, septicaemia, meningitis, endocarditis and pneumonia. It is also recognized as a zoonotic agent in people occupationally exposed to pigs or pig products. Knowledge on virulence factors of S. suis serotype 2 is limited and the pathogenesis of the infection is poorly understood. It has been suggested that the disease due to S. suis serotype 2 begins with colonization of the nasopharyngeal epithelium, followed by either spread within the respiratory tract or invasion of the bloodstream. The mechanisms involved in the access of bacteria from the bloodstream to the central nervous system are unknown. It is possible that epithelial cells of the choroid plexus also play an important role in the pathogenesis of the meningitis. Different interactions (adhesion, invasion and toxic effects) of S. suis serotype 2 with epithelial cell lines [LLC-PK1, PK(15), A549, HeLa and MDCK] were studied and compared to those of a human pathogen which also causes meningitis, group B Streptococcus (GBS). The results showed that S. suis serotype 2, in contrast to GBS, is able to adhere to but not to invade epithelial cells. The adhesin(s) involved seem(s) to be partially masked by the capsule and are a part of the cell wall. The haemolysin produced by S. suis serotype 2 is responsible for a toxic effect observed on epithelial cells. The results described give additional evidence that pathogenesis of the infection differs between S. suis and GBS. In particular, it is possible that suilysin-positive S. suis strains use adherence and cell injury, as opposed to direct cellular invasion, as part of a complicated multistep process which leads to bacteraemia and meningitis in pigs.  (+info)

Effect of nitrogen supply and defoliation on loss of organic compounds from roots of Festuca rubra. (74/1961)

The aim of this study was to determine the effects of N-supply and defoliation on rhizodeposition from Festuca rubra, in the context of whole-plant C- partitioning and root morphology. Plants were grown for 36 d in axenic sand microcosms continuously percolated with nutrient solutions of either high or low N concentration (2 mM or 0.01 mM NH(4)NO(3), respectively). The effects of partial defoliation at weekly intervals were determined at high and low N. At low N, dry matter accumulation in roots and shoots was reduced significantly (P<0.001), with proportionately increased partitioning to roots, in comparison with the high N treatment. Root morphology was also affected by N-treatment; at low N, lower biomass production was offset by increased specific root length (P<0.001), reducing the magnitude of the significant (P=0.002) increase in total root length at high N. Cumulative release of organic C from roots of F: rubra over the experimental period was not altered significantly by N-treatment. However, as a proportion of net C-assimilation, rhizodeposition was significantly (P<0.001) greater at low N than at high N. Defoliation transiently (3-5 d) increased the release of soluble organic compounds from roots at each N-supply rate, and increased significantly (P<0.001) cumulative rhizodeposition over the experimental period. These effects of N-supply and defoliation on rhizodeposition are of importance in understanding interactions between plant and microbial productivity in grazed grasslands, and in interpretation of concurrent effects on microbially driven nutrient cycling processes in these systems.  (+info)

Action potential-evoked Ca2+ signals and calcium channels in axons of developing rat cerebellar interneurones. (75/1961)

Axonal [Ca2+] transients evoked by action potential (AP) propagation were studied by monitoring the fluorescence of the high-affinity calcium-sensitive dye Oregon Green 488 BAPTA-1, introduced through whole-cell recording pipettes in the molecular layer of interneurones from cerebellar slices of young rats. The spatiotemporal profile of Ca2+-dependent fluorescence changes was analysed in well-focused axonal stretches a few tens of micrometres long. AP-evoked Ca2+ signals were heterogeneously distributed along axons, with the largest and fastest responses appearing in hot spots on average approximately 5 microm apart. The spatial distribution of fluorescence responses was independent of the position of the focal plane, uncorrelated to basal dye fluorescence, and independent of dye concentration. Recordings using the low-affinity dye mag-fura-2 and a Cs+-based intracellular solution revealed a similar pattern of hot spots in response to depolarisation, ruling out measurement artefacts or possible effects of inhomogeneous dye distribution in the generation of hot spots. Fluorescence responses to a short train of APs in hot spots decreased by 41-76 % after bath perfusion of omega-conotoxin MVIIC (5-6 microM), and by 17-65 % after application of omega-agatoxin IVA (500 nM). omega-Conotoxin GVIA (1 microM) had a variable, small effect (0-31 % inhibition), and nimodipine (5 microM) had none. Somatically recorded voltage-gated currents during depolarising pulses were unaffected in all cases. These data indicate that P/Q-type Ca2+ channels, and to a lesser extent N-type channels, are responsible for a large fraction of the [Ca2+] rise in axonalhot spots. [Ca2+] responses never failed during low-frequency (<= 0.5 Hz) stimulation, indicating reliable AP propagation to the imaged sites. Axonal branching points coincided with a hot spot in approximately 50 % of the cases. The spacing of presynaptic varicosities, as determined by a morphological analysis of Neurobiotin-filled axons, was approximately 10 times larger than the one measured for hot spots. The latter is comparable to the spacing reported for varicosities in mature animals. We discuss the nature of hot spots, considering as the most parsimonious explanation that they represent functional clusters of voltage-dependent Ca2+ channels, and possibly other [Ca2+] sources, marking the position of developing presynaptic terminals before the formation of en passant varicosities.  (+info)

Rapid virus production and removal as measured with fluorescently labeled viruses as tracers. (76/1961)

Pelagic marine viruses have been shown to cause significant mortality of heterotrophic bacteria, cyanobacteria, and phytoplankton. It was previously demonstrated, in nearshore California waters, that viruses contributed to up to 50% of bacterial mortality, comparable to protists. However, in less productive waters, rates of virus production and removal and estimates of virus-mediated bacterial mortality have been difficult to determine. We have measured rates of virus production and removal, in nearshore and offshore California waters, by using fluorescently labeled viruses (FLV) as tracers. Our approach is mathematically similar to the isotope dilution technique, employed in the past to simultaneously measure the release and uptake of ammonia and amino acids. The results indicated overall virus removal rates in the dark ranging from 1.8 to 6.2% h(-1) and production rates in the dark ranging from 1.9 to 6.1% h(-1), corresponding to turnover times of virus populations of 1 to 2 days, even in oligotrophic offshore waters. Virus removal rates determined by the FLV tracer method were compared to rates of virus degradation, determined at the same locations by radiolabeling methods, and were similar even though the current FLV method is suitable for only dark incubations. Our results support previous findings that virus impacts on bacterial populations may be more important in some environments and less so in others. This new method can be used to determine rates of virus degradation, production, and turnover in eutrophic, mesotrophic, and oligotrophic waters and will provide important inputs for future investigations of microbial food webs.  (+info)

Discrimination between viable and dead Encephalitozoon cuniculi (Microsporidian) spores by dual staining with sytox green and calcofluor white M2R. (77/1961)

Microsporidia are obligate intracellular parasites, recognized as causing chronic diarrhea and systemic disease in AIDS patients, organ transplant recipients, travelers, and malnourished children. Species of microsporidia that infect humans have been detected in drinking-water sources, and methods are needed to ascertain if these microsporidia are viable and capable of causing infections. In this study, Calcofluor White M2R and Sytox Green stains were used in combination to differentiate between live (freshly harvested) and dead (boiled) Encephalitozoon cuniculi spores. Calcofluor White M2R binds to chitin in the microsporidian spore wall. Dual-stained live spores appeared as turquoise-blue ovals, while dead spores appeared as white-yellow ovals at an excitation wavelength of 395 to 415 nm used for viewing the Calcofluor stain. Sytox Green, a nuclear stain, is excluded by live spores but penetrates compromised spore membranes. Dual-stained dead spores fluoresced bright yellow-green when viewed at an excitation wavelength of 470 to 490 nm, whereas live spores failed to stain with Sytox Green. After live and dead spores were mixed at various ratios, the number of viably stained spores detected in the dual-staining procedure correlated (P = 0.0025) with the expected numbers of viable spores. Spore mixtures were also assayed for infectivity in a focus-forming assay, and a correlation (P = 0.0002) was measured between the percentage of focus-forming microsporidia and the percentage of expected infectious spores in each mixture. By analysis of variance, no statistically significant differences were measured between the percentage of viably stained microsporidia and the percentage of infectious microsporidia (P = 0.964) in each mixture. These results suggest that Calcofluor White M2R and Sytox Green stains, when used together, may facilitate studies to identify viable microsporidia.  (+info)

An assessment of air toxics in Minnesota. (78/1961)

We used monitoring and modeling to assess the concentrations of air toxics in the state of Minnesota. Model-predicted concentrations for 148 hazardous air pollutants were from the U.S. Environmental Protection Agency Cumulative Exposure Project (1990 data). Monitoring data consisted of samples of volatile organic compounds, carbonyls, and particulate matter [Less than and equal to] 10 microm in aerodynamic diameter collected at 25 sites throughout the state for varying periods of time (up to 8 years; 1991-1998). Ten pollutants exceeded health benchmark values at one or more sites by modeling, monitoring, or both (including acrolein, arsenic, benzene, 1,3-butadiene, carbon tetrachloride, chromium, chloroform, ethylene dibromide, formaldehyde, and nickel). Polycyclic organic matter also exceeded the benzo[a]pyrene health benchmark value assumed to represent this class of pollutants. The highest modeled and monitored concentrations of most pollutants were near the center of the Minneapolis-St. Paul metropolitan area; however, many smaller cities throughout the state also had elevated concentrations. Where direct comparisons were possible, monitored values often tended to exceed model estimates. Upper-bound excess lifetime inhalation cancer risks were estimated to range from 2.7 [times] 10(-5) to 140. 9 [times] 10(-5) (modeling) and 4.7 [times] 10(-5) to 11.0 [times] 10(-5) (using a smaller set of monitored carcinogens). Screening noncancer hazard indices summed over all end points ranged from 0.2 to 58.1 (modeling) and 0.6 to 2.0 (with a smaller set of monitored pollutants). For common sets of pollutants, the concentrations, cancer risks, and noncancer hazard indices were comparable between model-based estimates and monitored values. The inhalation cancer risk was apportioned to mobile sources (54%), area sources (22%), point sources (12%), and background (12%). This study provides evidence that air toxics are a public health concern in Minnesota.  (+info)

Retinal VEGF mRNA measured by SYBR green I fluorescence: A versatile approach to quantitative PCR. (79/1961)

PURPOSE: To determine whether continuous monitoring of SYBR Green I fluorescence provides a reliable and flexible method of quantitative RT-PCR. Our aims were (i) to test whether SYBR Green I analysis could quantify a wide range of known VEGF template concentrations, (ii) to apply this method in an experimental model, and (iii) to determine whether 20 existing primer pairs could be used to quantify their cognate mRNAs. METHODS: Real-time quantitative PCR was performed using a LightCycler rapid thermal cycler (Roche). Retinal VEGF mRNA levels were measured in a murine model of oxygen-induced retinopathy during vaso-obliterative and hypoxic phases. RESULTS: This technique was able to detect as few as 10 control template copies, with quantitative data available routinely for 1000 or more copies. The levels of retinal VEGF mRNA expression followed the hypoxia-induced pattern determined previously by conventional methods. All gene-specific primer pairs which amplify a specific product by conventional PCR were successfully converted to SYBR Green analysis, including those for housekeeping genes glyceraldehyde phosphate dehydrogenase (GAPDH), cyclophilin, and acidic ribosomal phosphoprotein PO (ARP/36B4) and for 28S rRNA. In each case melting curve analysis and agarose gel electrophoresis confirmed the specificity of the amplification product. CONCLUSIONS: The sequence-independent detection of DNA with SYBR Green I means that it can be used to quantify the amplification of any cDNA using gene-specific primers. This rapid and flexible method is ideally suited for researchers in vision science wishing to quantify mRNAs from many different genes because it does not require investment in gene-specific hybridization probes.  (+info)

In situ Ca2+ imaging reveals neurotransmitter receptors for glutamate in taste receptor cells. (80/1961)

The neurotransmitters at synapses in taste buds are not yet known with confidence. Here we report a new calcium-imaging technique for taste buds that allowed us to test for the presence of glutamate receptors (GluRs) in living isolated tissue preparations. Taste cells of rat foliate papillae were loaded with calcium green dextran (CaGD). Lingual slices containing CaGD-labeled taste cells were imaged with a scanning confocal microscope and superfused with glutamate (30 micromter to 1 mm), kainate (30 and 100 micrometer), AMPA (30 and 100 micrometer), or NMDA (100 micrometer). Responses were observed in 26% of the cells that were tested with 300 micrometer glutamate. Responses to glutamate were localized to the basal processes and cell bodies, which are synaptic regions of taste cells. Glutamate responses were dose-dependent and were induced by concentrations as low as 30 microm. The non-NMDA receptor antagonists CNQX and GYKI 52466 reversibly blocked responses to glutamate. Kainate, but not AMPA, also elicited Ca(2+) responses. NMDA stimulated increases in [Ca(2+)](i) when the bath medium was modified to optimize for NMDA receptor activation. The subset of cells that responded to glutamate was either NMDA-unresponsive (54%) or NMDA-responsive (46%), suggesting that there are presumably two populations of glutamate-sensitive taste cells-one with NMDA receptors and the other without NMDA receptors. The function of GluRs in taste buds is not yet known, but the data suggest that glutamate is a neurotransmitter there. GluRs in taste cells might be presynaptic autoreceptors or postsynaptic receptors at afferent or efferent synapses.  (+info)