Increased rates of fatty acid uptake and plasmalemmal fatty acid transporters in obese Zucker rats. (65/946)

Giant vesicles were used to study the rates of uptake of long-chain fatty acids by heart, skeletal muscle, and adipose tissue of obese and lean Zucker rats. With obesity there was an increase in vesicular fatty acid uptake of 1.8-fold in heart, muscle and adipose tissue. In some tissues only fatty acid translocase (FAT) mRNA (heart, +37%; adipose, +80%) and fatty acid-binding protein (FABPpm) mRNA (heart, +148%; adipose, +196%) were increased. At the protein level FABPpm expression was not changed in any tissues except muscle (+14%), and FAT/CD36 protein content was altered slightly in adipose tissue (+26%). In marked contrast, the plasma membrane FAT/CD36 protein was increased in heart (+60%), muscle (+80%), and adipose tissue (+50%). The plasma membrane FABPpm was altered only in heart (+50%) and adipose tissues (+70%). Thus, in obesity, alterations in fatty acid transport in metabolically important tissues are not associated with changes in fatty acid transporter mRNAs or altered fatty acid transport protein expression but with their increased abundance at the plasma membrane. We speculate that in obesity fatty acid transporters are relocated from an intracellular pool to the plasma membrane in heart, muscle, and adipose tissues.  (+info)

Barrel pattern formation requires serotonin uptake by thalamocortical afferents, and not vesicular monoamine release. (66/946)

Thalamocortical neurons innervating the barrel cortex in neonatal rodents transiently store serotonin (5-HT) in synaptic vesicles by expressing the plasma membrane serotonin transporter (5-HTT) and the vesicular monoamine transporter (VMAT2). 5-HTT knock-out (ko) mice reveal a nearly complete absence of 5-HT in the cerebral cortex by immunohistochemistry, and of barrels, both at P7 and adulthood. Quantitative electron microscopy reveals that 5-HTT ko affects neither the density of synapses nor the length of synaptic contacts in layer IV. VMAT2 ko mice, completely lacking activity-dependent vesicular release of monoamines including 5-HT, also show a complete lack of 5-HT in the cortex but display largely normal barrel fields, despite sometimes markedly reduced postnatal growth. Transient 5-HTT expression is thus required for barrel pattern formation, whereas activity-dependent vesicular 5-HT release is not.  (+info)

Characterization of Schizosaccharomyces pombe malate permease by expression in Saccharomyces cerevisiae. (67/946)

In Saccharomyces cerevisiae, L-malic acid transport is not carrier mediated and is limited to slow, simple diffusion of the undissociated acid. Expression in S. cerevisiae of the MAE1 gene, encoding Schizosaccharomyces pombe malate permease, markedly increased L-malic acid uptake in this yeast. In this strain, at pH 3.5 (encountered in industrial processes), L-malic acid uptake involves Mae1p-mediated transport of the monoanionic form of the acid (apparent kinetic parameters: Vmax = 8.7 nmol/mg/min; Km = 1.6 mM) and some simple diffusion of the undissociated L-malic acid (Kd = 0.057 min(-1)). As total L-malic acid transport involved only low levels of diffusion, the Mae1p permease was further characterized in the recombinant strain. L-Malic acid transport was reversible and accumulative and depended on both the transmembrane gradient of the monoanionic acid form and the DeltapH component of the proton motive force. Dicarboxylic acids with stearic occupation closely related to L-malic acid, such as maleic, oxaloacetic, malonic, succinic and fumaric acids, inhibited L-malic acid uptake, suggesting that these compounds use the same carrier. We found that increasing external pH directly inhibited malate uptake, resulting in a lower initial rate of uptake and a lower level of substrate accumulation. In S. pombe, proton movements, as shown by internal acidification, accompanied malate uptake, consistent with the proton/dicarboxylate mechanism previously proposed. Surprisingly, no proton fluxes were observed during Mae1p-mediated L-malic acid import in S. cerevisiae, and intracellular pH remained constant. This suggests that, in S. cerevisiae, either there is a proton counterflow or the Mae1p permease functions differently from a proton/dicarboxylate symport.  (+info)

Engineered Zn(2+) switches in the gamma-aminobutyric acid (GABA) transporter-1. Differential effects on GABA uptake and currents. (68/946)

Two high affinity Zn(2+) binding sites were engineered in the otherwise Zn(2+)-insensitive rat gamma-aminobutyric acid (GABA) transporter-1 (rGAT-1) based on structural information derived from Zn(2+) binding sites engineered previously in the homologous dopamine transporter. Introduction of a histidine (T349H) at the extracellular end of transmembrane segment (TM) 7 together with a histidine (E370H) or a cysteine (Q374C) at the extracellular end of TM 8 resulted in potent inhibition of [3H]GABA uptake by Zn(2+) (IC(50) = 35 and 44 microM, respectively). Upon expression in Xenopus laevis oocytes it was similarly observed that Zn(2+) was a potent inhibitor of the GABA-induced current (IC(50) = 21 microM for T349H/E370H and 51 microM for T349H/Q374C), albeit maximum inhibition was only approximately 40% in T349H/E370H versus approximately 90% in T349H/Q374C. In the wild type, Zn(2+) did not affect the Na(+)-dependent transient currents elicited by voltage jumps and thought to reflect capacitive charge movements associated with Na(+) binding. However, in both mutants Zn(2+) caused a reduction of the inward transient currents upon jumping to hyperpolarized potentials as reflected in rightward-shifted Q/V relationships. This suggests that Zn(2+) is inhibiting transporter function by stabilizing the outward-facing Na(+)-bound state. Translocation of lithium by the transporter does not require GABA binding and analysis of this uncoupled Li(+) conductance revealed a potent inhibition by Zn(2+) in T349H/E370H, whereas surprisingly the T349H/Q374C leak was unaffected. This differential effect supports that the leak conductance represents a unique operational mode of the transporter involving conformational changes different from those of the substrate translocation process. Altogether our results support both an evolutionary conserved structural organization of the TM 7/8 domain and a key role of this domain in GABA-dependent and -independent conformational changes of the transporter.  (+info)

Role of kidney-specific organic anion transporters in the urinary excretion of methotrexate. (69/946)

BACKGROUND: High-dose folinic acid is used to accelerate methotrexate elimination to avoid renal toxicity of the drug. The present study was carried out to examine the role of the renal organic anion transporters OAT-K1 and OAT-K2 in the urinary excretion of methotrexate, especially in the methotrexate-folinic acid rescue therapy. METHODS: Madin-Darby canine kidney cells stably expressing OAT-K1 and OAT-K2 were used for the in vitro transport study; 5/6 nephrectomized rats were used to detect changes in mRNA expression levels of OAT-K1 and OAT-K2 and to evaluate methotrexate pharmacokinetics under conditions of renal insufficiency. RESULTS: Methotrexate efflux mediated by these transporters in stable transfectants was stimulated in the presence of extracellular folic acid and folinic acid, suggesting that they could serve as anion exchangers to enhance the apical efflux of methotrexate. The mRNA expression levels of OAT-K1 and OAT-K2 were markedly diminished after 5/6 nephrectomy, but those of multidrug resistance associated protein 2, which could transport methotrexate, were maintained. Renal clearance of methotrexate was markedly decreased in 5/6 nephrectomized rats compared with that in sham-operated rats. Additional folinic acid treatment resulted in a significant increase in methotrexate renal clearance in sham-operated rats but not in 5/6 nephrectomized rats. CONCLUSIONS: The decreased expressions of OAT-K1 and OAT-K2 may be attributable to the longer exposure to methotrexate and ineffective folinic acid rescue. In terms of contributing to patient safety, renal clearance of methotrexate, especially folinic acid-stimulated tubular secretion of the drug via these transporters, would be a key factor in methotrexate therapy.  (+info)

Electrostimulation enhances FAT/CD36-mediated long-chain fatty acid uptake by isolated rat cardiac myocytes. (70/946)

We investigated palmitate uptake and utilization by contracting cardiac myocytes in suspension to explore the link between long-chain fatty acid (FA) uptake and cellular metabolism, in particular the role of fatty acid translocase (FAT)/CD36-mediated transsarcolemmal FA transport. For this, an experimental setup was developed to electrically stimulate cardiomyocytes in multiple parallel incubations. Electrostimulation at voltages > or =170 V resulted in cellular contraction with no detrimental effect on cellular integrity. At 200 V and 4 Hz, palmitate uptake (measured after 3-min incubation) was enhanced 1.5-fold. In both quiescent and contracting myocytes, after their uptake, palmitate was largely and rapidly esterified, mainly into triacylglycerols. Palmitate oxidation (measured after 30 min) contributed to 22% of palmitate taken up by quiescent cardiomyocytes and, after stimulation at 4 Hz, was increased 2.8-fold to contribute to 39% of palmitate utilization. The electrostimulation-mediated increase in palmitate uptake was blocked in the presence of either verapamil, a contraction inhibitor, or sulfo-N-succinimidyl-FA esters, specific inhibitors of FAT/CD36. These data indicate that, in contracting cardiac myocytes, palmitate uptake is increased due to increased flux through FAT/CD36.  (+info)

Substrate-induced regulation of gamma-aminobutyric acid transporter trafficking requires tyrosine phosphorylation. (71/946)

Neurotransmitter transporters regulate synaptic transmitter levels and are themselves functionally regulated by a number of different signal transduction cascades. A common theme in transporter regulation is redistribution of transporter protein between intracellular stores and the plasma membrane. The triggers and mechanisms underlying this regulation are important in the control of extracellular transmitter concentrations and hence synaptic signaling. Previously, we demonstrated that the gamma-aminobutyric acid transporter GAT1 is regulated by direct tyrosine phosphorylation, resulting in an up-regulation of transporter expression on the plasma membrane. In the present report, we show that two tyrosine residues on GAT1 contribute to the phosphorylation and transporter redistribution. Tyrosine phosphorylation is concomitant with a decrease in the rate of transporter internalization from the plasma membrane. A decrease in GAT internalization rates also occurs in the presence of GAT1 substrates, suggesting the hypothesis that tyrosine phosphorylation is required for the substrate-induced up-regulation of GAT1 surface expression. In support of this hypothesis, incubation of GAT1-expressing cells with transporter ligands alters the amount of GAT1 tyrosine phosphorylation, and substrate-induced surface expression is unchanged in a GAT1 mutant lacking tyrosine phosphorylation sites. These data suggest a model in which substrates permit the phosphorylation of GAT1 on tyrosine residues and that the phosphorylated state of the transporter is refractory for internalization.  (+info)

Multispecific substrate recognition of kidney-specific organic anion transporters OAT-K1 and OAT-K2. (72/946)

We characterized the interactions of various compounds with OAT-K1 and OAT-K2, kidney-specific organic anion transporters. By using Madin-Darby canine kidney cells stably transfected with OAT-K1 or OAT-K2 cDNA, the antitumor drug methotrexate, the mycotoxin ochratoxin A, endogenous organic anions (thyroid hormones, taurocholic acid, and conjugated steroids), and the antiretroviral drug zidovudine were shown to be substrates for these transporters. Although the apparent Michaelis constant (Km) values of methotrexate for OAT-K1 and OAT-K2 were 2.1 and 1.8 microM, respectively, 2.5 mM methotrexate inhibited only 20% of the 125I-thyroid hormones uptake via these transporters. In addition, 100 microM methotrexate did not have any effect on [3H]zidovudine uptake via OAT-K1 or OAT-K2. Similarly, several substrates caused little or no mutual inhibition at concentrations much higher than their Km values for these transporters. Moreover, intracellular methotrexate trans-stimulated the OAT-K1- and OAT-K2-mediated uptake of [3H]folic acid, but not that of other compounds. Organic anion-transporting polypeptide 2 (oatp2), a liver-type homolog of OAT-K1 and OAT-K2, showed similar events. The inhibition constant values of triiodothyronine and taurocholic acid for [3H]digoxin uptake in oatp2-expressing oocytes resulted in 50.4 and 1.48 mM, respectively, which were about 9- and 40-fold higher than their Km values for oatp2, respectively. These findings suggested that several substrates interact with these transporters at different amino acid residue(s). Taken together, these observations suggested that OAT-K1 and OAT-K2 could serve as multispecific transporters, mediating transport of a wide variety of endogenous substances, xenobiotics, and their metabolites in the kidney, presumably via several interaction sites in their molecules.  (+info)