Infrared dichroism of the DNA-caffeine complex. A new method for determination of the ligand orientation. (1/218)

Infrared linear dichroism (LD) measurements on films of the DNA-caffeine complex in terms of the relative humidity (r.h.) show two main effects. Firstly, there is an insertion of caffeine molecules into the DNA double helix (B form), as evidenced by a very strong parallel LD behaviour of the 745 cm-1 band due to the C-H out-of-plane deformation vibration of caffeine. Furthermore, a high r.h. values a modified B form occurs in the complex similar to the B form recently reported by BRAHMS and coworkers for DNA-polypeptide complexes. The reversible B-A transition of the DNA in dependence of the r.h. is not affected in general in the presence of caffeine.  (+info)

Lactonamycin, a new antimicrobial antibiotic produced by Streptomyces rishiriensis MJ773-88K4. II. Structure determination. (2/218)

The absolute structure of a new antibiotic lactonamycin is described. The NMR studies deduced one of four possible structures for the aglycon attached by a rhodinose through glycosidic bond. The stereochemistry of the sugar obtained by an acid hydrolysis was determined to be L-form by measuring optical rotation. The stereochemistry of the aglycon was determined by X-ray crystallographic analysis.  (+info)

Structure elucidation of Sch 20562, a glucosidic cyclic dehydropeptide lactone--the major component of W-10 antifungal antibiotic. (3/218)

A novel bacterium designated as Aeromonas sp. W-10 produces the antibiotic W-10 complex which comprises of two major and several minor components. The two major components from this complex, Sch 20562 (1) and Sch 20561 (1a), are of biological interest in view of their potent antifungal activity. The chemical degradation studies utilized for the assignment of structure 1 for Sch 20562 are described here. Some of the noteworthy diversity of structural features in this glucosidic cyclic dehydrononapeptide lactone 1 are: an N-terminal (D)-beta-hydroxymyristyl unit, three D-amino acid units, two (E)-alpha-aminocrotonyl units, and an O-alpha-D-glucosyl-N-methyl-L-allo-threonine unit. The structure determination of 1 utilized the selective cleavage of the dehydropeptide units by ozonolysis to form fragments that were sequenced by mass spectrometry. The stereochemistry of the amino acid units were assigned by isolation of the free amino acids from the hydrolysates of the fragments. The stereochemistry of the alpha-aminocrotonyl units and the glucosidic linkage were assigned by nmr spectroscopy and molecular rotation data.  (+info)

Structure elucidation of Sch 20561, a cyclic dehydropeptide lactone--a major component of W-10 antifungal antibiotic. (4/218)

Antibiotic W-10 is a fermentation complex produced by the bacterium Aeromonas sp. W-10. The cyclic dehydropeptide lactones Sch 20562 (1) and Sch 20561 (2) are the major components of this fermentation complex and are of biological interest in view of their unique structural features and potent antifungal activity. The chemical degradation studies that were utilized in the assignment of structure 2 for Sch 20561 are described here. The structure determination of 2 made use of the ozonolytic cleavage of the dehydropeptide units to form fragments that were sequenced by mass spectrometry. The cyclic dehydropeptide lactone Sch 20561 (2) was found to be the aglycone of Sch 20562 (1) and these two natural products were correlated by a chemical transformation involving the deglucosidation of 1 to form 2.  (+info)

Attraction of the oriental fruit fly, Dacus dorsalis, to methyl eugenol and related olfactory stimulants. (5/218)

The attraction of male oriental fruit flies to methyl eugenol and 34 analogues was investigated quantitatively using the characteristic feeding response. Methyl eugenol was the most active compound studied, with a feeding response to 0.01 mug, but saturation of the allyl side chain or replacement of allyl by allyloxy produced compounds almost as effective. Replacement of the methoxy groups by methylenedioxy, methyl, or chloro groups abolished all response. The ring geometry of the methoxy groups was critical, with orthodimethoxy most active and meta-dimethoxy inactive. Replacement of methoxy with hydroxy, methylthio, or amino groups did not abolish the response. The failure of the oriental fruit fly to respond to the methyl and chloro isosteres of methyl eugenol was contrasted with the response of a human odor panel which perceived these compounds as having weak floral odors.  (+info)

Optimal integration of texture and motion cues to depth. (6/218)

We report the results of a depth-matching experiment in which subjects were asked to adjust the height of an ellipse until it matched the depth of a simulated cylinder defined by texture and motion cues. In one-third of the trials the shape of the cylinder was primarily given by motion information, in another one-third of the trials it was given by texture information, and on the remaining trials it was given by both sources of information. Two optimal cue combination models are described where optimality is defined in terms of Bayesian statistics. The parameter values of the models are set based on subjects' responses on trials when either the motion cue or the texture cue was informative. These models provide predictions of subjects' responses on trials when both cues were informative. The results indicate that one of the optimal models provides a good fit to the subjects' data, and the second model provides an exceptional fit. Because the predictions of the optimal models closely match the experimental data, we conclude that observers' cue-combination strategies are indeed optimal, at least under the conditions studied here.  (+info)

Stereochemical course of the adenosine triphosphate phosphoribosyltransferase reaction in histidine biosynthesis. (7/218)

The product of the first reaction in histidine biosynthesis is shown by optical rotation measurements on three derivatives to have inverted, beta stereochemistry at the newly formed bond. This is in contrast to alpha linkage expected on the basis of previously observed exchange, specificity, and covalent intermediate phenomena. The postulate double displacement mechanism for adenosine triphosphate phosphoribosyltransferase must be modified to account for the product stereochemistry.  (+info)

Complex formation between mycobacterial polysaccharides or cyclodextrins and palmitoyl coenzyme A. (8/218)

The mycobacterial polysaccharides MMP (3-O-methyl-mannose-containing polysaccharide), MGLP (lipolysaccharide containing 6-O-methylglucose and glucose), and the cyclodextrins (cyclohexaamylose and cycloheptaamylose) form stoichiometric complexes with palmitoyl-CoA (Machida, Y., Bergeron, R., Flick, P., and Bloch, K. (1973) J. Biol. Chem. 248, 6246-6247). Complex formation is presumed to result from hydrophobic interactions. In order to enhance the hydrophobic character of the cyclodextrins the following derivatives have been synthesized: heptakis (2,di-O-propyl)-, heptakis (2,6-di-O-methyl)-, pentakis (6-O-methyl)-, heptakis (3-O-methyl)-, and permethylated beta-cyclo-dextrin. These compounds stimulate fatty acid synthesis catalyzed by the Mycobacterium smegmatis fatty acid synthetase, the magnitude of the effect decreasing in the order in which the alkylated cyclodextrins are listed above. MMP or MGLP are qualitatively indistinguishable from alkylated cyclodextrins both with respect to palmitoyl-CoA binding and with respect to effects on enzyme systems, suggesting that they form inclusion complexes of the same type. On the basis of model building it is postulated that MMP in solution assumes a helical conformation with a hydrophobic channel about 6 A in diameter and approximately 29 A long, dimensions appropriate for accommodating the paraffinic chain of palmitoyl-CoA in the form of an inclusion complex. Since palmitoyl-CoA binds to polysaccharide much more tightly than free palmitate it is further postulated that ionized groups of the CoA moiety of acyl CoA participate in the binding and do so by hydrogen bonding to the hydrophilic exterior of helical MMP. Palmitoyl-CoA, and to a lesser extent palmitate, affect the optical rotation of MMP and also of the alkylated cyclodextrins indicating that complex formation induces conformational changes in the polysaccharides.  (+info)