The effect of experimental glaucoma and optic nerve transection on amacrine cells in the rat retina. (57/264)

PURPOSE: To detect alterations in amacrine cells associated with retinal ganglion cell (RGC) depletion caused by experimental optic nerve transection and glaucoma. METHODS: Intraocular pressure (IOP) was elevated unilaterally in 18 rats by translimbal trabecular laser treatment, and eyes were studied at 1 (n = 6), 2 (n = 5), and 3 (n = 7) months. Complete optic nerve transection was performed unilaterally in nine rats with survival for 1 (n = 4) and 3 (n = 5) months. Serial cryosections (five per eye) were immunohistochemically labeled with rabbit anti-gamma-aminobutyric acid (GABA) and anti-glycine antibodies. Cells in the ganglion cell and inner nuclear layers that labeled for GABA or glycine were counted in a masked fashion under bright-field microscopy. Additional labeling with other RGC and amacrine antigens was also performed. RGC loss was quantified by axon counts. RESULTS: Amacrine cells identified by GABA and glycine labeling were not significantly affected by experimental glaucoma, with a mean decrease of 15% compared with bilaterally untreated control cells (557 +/- 186 neurons/mm [glaucoma] versus 653.9 +/- 114.4 neurons/mm [control] of retina; P = 0.15, t-test). There was no significant trend for amacrine cell counts to be lower in eyes with fewer RGCs (r = -0.39, P = 0.11). By contrast, there was highly significant loss of GABA and glycine staining 3 months after nerve transection, both in the treated and the fellow eyes (P < 0.0001, t-test). However, there was a substantial number of remaining amacrine cells in transected retinas, as indicated by labeling for calretinin and calbindin. CONCLUSIONS: Experimental glaucoma causes minimal change in amacrine cells and their expression of neurotransmitters. After nerve transection, neurotransmitter presence declines, but many amacrine cell bodies remain. Differences among optic nerve injury models, as well as effects on "untreated" fellow eyes, should be recognized.  (+info)

Neuroprotective effect of sulfhydryl reduction in a rat optic nerve crush model. (58/264)

PURPOSE: The signaling of retinal ganglion cell (RGC) death after axotomy is partly dependent on the generation of reactive oxygen species. Shifting the RGC redox state toward reduction is protective in a dissociated mixed retinal culture model of axotomy. The hypothesis for the current study was that tris(2-carboxyethyl)phosphine (TCEP), a sulfhydryl reductant, would protect RGCs in a rat optic nerve crush model of axotomy. METHODS: RGCs of postnatal day 4 to 5 Long-Evans rats were retrogradely labeled with the fluorescent tracer DiI. At approximately 8 weeks of age, the left optic nerve of each rat was crushed with forceps and, immediately after, 4 muL of TCEP (or vehicle alone) was injected into the vitreous at the pars plana to a final concentration of 6 or 60 microM. The right eye served as the control. Eight or 14 days after the crush, the animals were killed, retinal wholemounts prepared, and DiI-labeled RGCs counted. Bandeiraea simplicifolia lectin (BSL-1) was used to identify microglia. RESULTS: The mean number of surviving RGCs at 8 days in eyes treated with 60 microM TCEP was significantly greater than in the vehicle group (1250 +/- 156 vs. 669 +/- 109 cells/mm(2); P = 0.0082). Similar results were recorded at 14 days. Labeling was not a result of microglia phagocytosing dying RGCs. No toxic effect on RGC survival was observed with TCEP injection alone. CONCLUSIONS: The sulfhydryl-reducing agent TCEP is neuroprotective of RGCs in an optic nerve crush model. Sulfhydryl oxidative modification may be a final common pathway for the signaling of RGC death by reactive oxygen species after axotomy.  (+info)

EGFR activation mediates inhibition of axon regeneration by myelin and chondroitin sulfate proteoglycans. (59/264)

Inhibitory molecules associated with myelin and the glial scar limit axon regeneration in the adult central nervous system (CNS), but the underlying signaling mechanisms of regeneration inhibition are not fully understood. Here, we show that suppressing the kinase function of the epidermal growth factor receptor (EGFR) blocks the activities of both myelin inhibitors and chondroitin sulfate proteoglycans in inhibiting neurite outgrowth. In addition, regeneration inhibitors trigger the phosphorylation of EGFR in a calcium-dependent manner. Local administration of EGFR inhibitors promotes significant regeneration of injured optic nerve fibers, pointing to a promising therapeutic avenue for enhancing axon regeneration after CNS injury.  (+info)

Serial follow-up in traumatic optic neuropathy using scanning laser polarimetry and visual field testing. (60/264)

A 40-year-old male patient suffered from traumatic optic neuropathy in his right eye. Scanning laser polarimetry was arranged at 2 weeks, 9 weeks, 13 weeks, 24 weeks, and 34 weeks after the trauma. Manual or automated visual field testing was also arranged at 1 week, 5 weeks, 16 weeks, and 28 weeks correspondingly. The data revealed using scanning laser polarimetry (program GDx, version 1.0.05; Laser Diagnostic Technologies, San Diego, Calif, USA) were nearly normal at 2 weeks after trauma, but lower visual field loss was revealed using visual field testing within 2 weeks after the trauma. The superior hump of the GDx deviated from normal at about 9 weeks and some GDx parameters (the Number, Superior/Nasal, Ellipse Modulation (Ellipse Mod.), Maximal Modulation (Max. Mod.), Symmetry, Superior Ratio (Super. Ratio)) became worse later in the series. We propose that visual field defects might be present before retinal nerve fiber layer loss. In this case, scanning laser polarimetry for evaluating the severity of traumatic optic neuropathy was limited especially within 2 weeks after the trauma.  (+info)

Neurotrophic factor synergy is required for neuronal survival and disinhibited axon regeneration after CNS injury. (61/264)

The therapeutic effects of individual neurotrophic factors (NTF) have proved disappointing in clinical trials for neuronal repair and axon regeneration. Here, we demonstrate NTF synergistic neuronal responses after a combination of basic fibroblast growth factor, neurotrophin-3 and brain derived growth factor delivered to the somata of retinal ganglion cells promoted greater survival and axon growth than did the sum of the effects of each NTF alone. Triple and not single NTF treatments potentiated regulated intramembraneous proteolysis of p75(NTR), and ectodomain shedding of Nogo receptor, correlated with a 30% decrease in activation of Rho-A, a key signalling molecule in the axon growth inhibitory cascade. Thus, combinatorial NTF administration synergistically enhanced neuronal survival, disinhibited axon growth and promoted axon regeneration through the hostile CNS environment without the intervention of scar tissue at the lesion site.  (+info)

Concomitant optic nerve transection and chorioretinitis sclopetaria. (62/264)

BACKGROUND: Optic nerve transection and chorioretinitis sclopetaria may occur following blunt ocular trauma. However, simultaneous occurrence has not yet been reported. We report the first case of concomitant optic nerve transection and chorioretinitis sclopetaria. CASE PRESENTATION: A 12-year-old boy with history of BB gun injury to his right eye was referred for loss of vision. His visual acuity was counting fingers at one meter in the right eye and with 3+ relative afferent pupillary defect (RAPD). On slit lamp examination, the right eye appeared normal except for 1+ vitreous reaction. Fundus examination of the right eye revealed a pale disc with superior retinal scar and diffuse submacular fibrosis compatible with chorioretinitis sclopetaria. Orbital CT-scans showed transection of the optic nerve by the BB gun pellet, which was lodged at the orbital apex. CONCLUSION: BB gun injury may cause concomitant optic nerve transection and chorioretinitis sclopetaria.  (+info)

Synergistic action of brain-derived neurotrophic factor and lens injury promotes retinal ganglion cell survival, but leads to optic nerve dystrophy in vivo. (63/264)

Trauma or disease in the CNS often leads to neuronal death and consequent loss of functional connections. The idea has been put forward that strategies aimed at repairing the injured CNS involve stimulation of both neuronal survival and axon regeneration. We tested this hypothesis in the adult rat retinocollicular system by combining two strategies: (i) exogenous administration of brain-derived neurotrophic factor (BDNF), a potent survival factor for damaged retinal ganglion cells (RGCs) and (ii) lens injury, which promotes robust growth of transected RGC axons. Our results demonstrate that BDNF and lens injury interact synergistically to promote neuronal survival: 71% of RGCs were alive at 2 weeks after optic nerve injury, a time when only approximately 10% of these neurons remain without treatment. Intravitreal injection of BDNF, however, led to regeneration failure following lens injury. The effect of BDNF could not be generalized to other growth factors, as ciliary neurotrophic factor did not cause a significant reduction of lens injury-induced regeneration. Growth arrest in optic nerves treated with BDNF and lens injury correlated with the formation of hypertrophic axonal swellings in the proximal optic nerve. These swellings were filled with numerous vesicular bodies, disorganized neurofilaments and degenerating organelles. Our results demonstrate that: (i) increased neuronal survival does not necessarily lead to enhanced axon regeneration and (ii) activation of survival and growth pathways may produce axonal dystrophy similar to that found in neurodegenerative disorders including glaucoma, Alzheimer's disease and multiple sclerosis. We propose that loss of axonal integrity may limit neuronal recovery in the injured, adult CNS.  (+info)

Computer modelling study of the mechanism of optic nerve injury in blunt trauma. (64/264)

AIM: The potential causes of the optic nerve injury as a result of blunt object trauma, were investigated using a computer model. METHODS: A finite element model of the eye, the optic nerve, and the orbit with its content was constructed to simulate blunt object trauma. We used a model of the first phalanx of the index finger to represent the blunt body. The trauma was simulated by impacting the blunt body at the surface between the globe and the orbital wall at velocities between 2-5 m/s, and allowing it to penetrate 4-10 mm below the orbital rim. RESULTS: The impact caused rotations of the globe of up to 5000 degrees /s, lateral velocities of up to 1 m/s, and intraocular pressures (IOP) of over 300 mm Hg. The main stress concentration was observed at the insertion of the nerve into the sclera, at the side opposite to the impact. CONCLUSIONS: The results suggest that the most likely mechanisms of injury are rapid rotation and lateral translation of the globe, as well as a dramatic rise in the IOP. The strains calculated in the study should be sufficiently high to cause axonal damage and even the avulsion of the nerve. Finite element computer modelling has therefore provided important insights into a clinical scenario that cannot be replicated in human or animal experiments.  (+info)