North American and European porcine reproductive and respiratory syndrome viruses differ in non-structural protein coding regions. (25/11650)

Although North American and European serotypes of porcine reproductive and respiratory syndrome virus (PRRSV) are recognized, only the genome of the European Lelystad strain (LV) has been sequenced completely. Here, the genome of the pathogenic North American PRRSV isolate 16244B has been sequenced and compared with LV. The genomic organization of 16244B was the same as LV but with only 63.4% nucleotide identity. The 189 nucleotide 5' non-coding region (NCR) of 16244B was distinct from the LV NCR, with good conservation (83%) only over a 43 base region immediately upstream of open reading frame (ORF) 1a. Major differences were found in the region encoding the non-structural part of the ORF1a polyprotein, which shared only 47% amino acid identity over 2503 residues of the six non-structural proteins (Nsps) encoded. Nsp2, thought to have a species-specific function, showed the greatest divergence, sharing only 32% amino acid identity with LV and containing 120 additional amino acids in the central region. Nsps encoded by the 5'-proximal and central regions of ORF1b had from 66 to 75% amino acid identity; however, the carboxy-terminal protein CP4 was distinct (42% identity). The ORF 1a-1b frameshift region of 16244B had 98% nucleotide identity with LV. Consistent with previous reports for North American isolates, the six structural proteins encoded were 58 to 79% identical to LV proteins. The 3' NCR (150 nucleotides) was 76% identical between isolates. These genomic differences confirm the presence of distinct North American and European PRRSV genotypes.  (+info)

Determination and phylogenetic analysis of partial sequences from TT virus isolates. (26/11650)

Sera from French in-patients were tested for the presence of the TT virus (TTV) genome using PCR and degenerate primers located in ORF1. Thirty-six sequences were determined and compared with those deposited in databases, revealing a high degree of genetic variability between TTV isolates (up to 47% for amino acid sequences). Phylogenetic analysis demonstrated the existence of three main groups corresponding to the previously described genotypes 1 and 2 and to a new genotype 3. Isolates could be assigned to distinct genotypes if their genetic distance was > 27%. No comparable genetic criteria were found for the definition of sub-types in the region studied. A 15-31 month follow-up of three haemodialysis patients proved the existence of chronic infection by TTV. In one patient, two strains belonging to different genotypes were detected at the same time. Sequences of both ORF1 and ORF2 remained unchanged for a given strain during the follow-up.  (+info)

The R27080 glycoprotein is abundantly secreted from human cytomegalovirus-infected fibroblasts. (27/11650)

A 45 kDa glycoprotein was purified from the culture media of human cytomegalovirus (HCMV)-infected fibroblasts. N-terminal sequencing revealed that the protein, R27080, is the translation product of the R27080 open reading frame of HCMV. R27080 is highly glycosylated and contains no cysteine or methionine residues. Proteolytic cleavage of R27080 by a furin-like enzyme was analysed in transfected COS-7 cells. R27080 is the first identified viral protein secreted from HCMV-infected cells.  (+info)

Adaptation of the geminivirus bean yellow dwarf virus to dicotyledonous hosts involves both virion-sense and complementary-sense genes. (28/11650)

Bean yellow dwarf virus (BeYDV) and maize streak virus (MSV) belong to the geminivirus genus Mastrevirus and have host ranges confined to dicotyledonous and monocotyledonous species, respectively. To investigate viral determinants of host range specificity, chimeras were constructed by exchanging their coding and non-coding regions. BeYDV chimeras containing MSV ORF V1, ORF V2 or small intergenic region sequences, either individually or in various sequential combinations, replicated and produced virus particles in Nicotiana tabacum protoplasts. BeYDV chimeras containing MSV ORFs C1 and C2 and/or the large intergenic region were unable to replicate. None of the chimeras was able to systemically infect either N. benthamiana or maize. Complementation experiments using BeYDV chimeras containing MSV ORF V1 and/or ORF V2 suggest that expression of MSV movement protein and/or coat protein prevents BeYDV movement. The results demonstrate that factors involved in both viral DNA replication and virus movement are exclusively adapted to either monocotyledonous or dicotyledonous host backgrounds.  (+info)

Sequence of Shiga toxin 2 phage 933W from Escherichia coli O157:H7: Shiga toxin as a phage late-gene product. (29/11650)

Lysogenic bacteriophages are major vehicles for the transfer of genetic information between bacteria, including pathogenicity and/or virulence determinants. In the enteric pathogen Escherichia coli O157:H7, which causes hemorrhagic colitis and hemolytic-uremic syndrome, Shiga toxins 1 and 2 (Stx1 and Stx2) are phage encoded. The sequence and analysis of the Stx2 phage 933W is presented here. We find evidence that the toxin genes are part of a late-phage transcript, suggesting that toxin production may be coupled with, if not dependent upon, phage release during lytic growth. Another phage gene, stk, encodes a product resembling eukaryotic serine/threonine protein kinases. Based on its position in the sequence, Stk may be produced by the prophage in the lysogenic state, and, like the YpkA protein of Yersinia species, it may interfere with the signal transduction pathway of the mammalian host. Three novel tRNA genes present in the phage genome may serve to increase the availability of rare tRNA species associated with efficient expression of pathogenicity determinants: both the Shiga toxin and serine/threonine kinase genes contain rare isoleucine and arginine codons. 933W also has homology to lom, encoding a member of a family of outer membrane proteins associated with virulence by conferring the ability to survive in macrophages, and bor, implicated in serum resistance.  (+info)

Sequence analysis of scaffolding protein CipC and ORFXp, a new cohesin-containing protein in Clostridium cellulolyticum: comparison of various cohesin domains and subcellular localization of ORFXp. (30/11650)

The gene encoding the scaffolding protein of the cellulosome from Clostridium cellulolyticum, whose partial sequence was published earlier (S. Pages, A. Belaich, C. Tardif, C. Reverbel-Leroy, C. Gaudin, and J.-P. Belaich, J. Bacteriol. 178:2279-2286, 1996; C. Reverbel-Leroy, A. Belaich, A. Bernadac, C. Gaudin, J. P. Belaich, and C. Tardif, Microbiology 142:1013-1023, 1996), was completely sequenced. The corresponding protein, CipC, is composed of a cellulose binding domain at the N terminus followed by one hydrophilic domain (HD1), seven highly homologous cohesin domains (cohesin domains 1 to 7), a second hydrophilic domain, and a final cohesin domain (cohesin domain 8) which is only 57 to 60% identical to the seven other cohesin domains. In addition, a second gene located 8.89 kb downstream of cipC was found to encode a three-domain protein, called ORFXp, which includes a cohesin domain. By using antiserum raised against the latter, it was observed that ORFXp is associated with the membrane of C. cellulolyticum and is not detected in the cellulosome fraction. Western blot and BIAcore experiments indicate that cohesin domains 1 and 8 from CipC recognize the same dockerins and have similar affinity for CelA (Ka = 4.8 x 10(9) M-1) whereas the cohesin from ORFXp, although it is also able to bind all cellulosome components containing a dockerin, has a 19-fold lower Ka for CelA (2.6 x 10(8) M-1). Taken together, these data suggest that ORFXp may play a role in cellulosome assembly.  (+info)

Genetic analysis of the Serratia marcescens N28b O4 antigen gene cluster. (31/11650)

The Serratia marcescens N28b wbbL gene has been shown to complement the rfb-50 mutation of Escherichia coli K-12 derivatives, and a wbbL mutant has been shown to be impaired in O4-antigen biosynthesis (X. Rubires, F. Saigi, N. Pique, N. Climent, S. Merino, S. Alberti, J. M. Tomas, and M. Regue, J. Bacteriol. 179:7581-7586, 1997). We analyzed a recombinant cosmid containing the wbbL gene by subcloning and determination of O-antigen production phenotype in E. coli DH5alpha by sodium dodecyl sulfate-polyacrylamide electrophoresis and Western blot experiments with S. marcescens O4 antiserum. The results obtained showed that a recombinant plasmid (pSUB6) containing about 10 kb of DNA insert was enough to induce O4-antigen biosynthesis. The same results were obtained when an E. coli K-12 strain with a deletion of the wb cluster was used, suggesting that the O4 wb cluster is located in pSUB6. No O4 antigen was produced when plasmid pSUB6 was introduced in a wecA mutant E. coli strain, suggesting that O4-antigen production is wecA dependent. Nucleotide sequence determination of the whole insert in plasmid pSUB6 showed seven open reading frames (ORFs). On the basis of protein similarity analysis of the ORF-encoded proteins and analysis of the S. marcescens N28b wbbA insertion mutant and wzm-wzt deletion mutant, we suggest that the O4 wb cluster codes for two dTDP-rhamnose biosynthetic enzymes (RmlDC), a rhamnosyltransferase (WbbL), a two-component ATP-binding-cassette-type export system (Wzm Wzt), and a putative glycosyltransferase (WbbA). A sequence showing DNA homology to insertion element IS4 was found downstream from the last gene in the cluster (wbbA), suggesting that an IS4-like element could have been involved in the acquisition of the O4 wb cluster.  (+info)

Identification and cloning of an Erwinia carotovora subsp. carotovora bacteriocin regulator gene by insertional mutagenesis. (32/11650)

Avirulent Erwinia carotovora subsp. carotovora CGE234-M403 produces two types of bacteriocin. For the purpose of cloning the bacteriocin genes of strain CGE234M403, a spontaneous rifampin-resistant mutant of this strain, M-rif-11-2, was isolated. By Tn5 insertional mutagenesis using M-rif-11-2, a mutant, TM01A01, which produces the high-molecular-weight bacteriocin but not the low-molecular-weight bacteriocin was obtained. By thermal asymmetric interlaced PCR, the DNA sequence from the Tn5 insertion site and the DNA sequence of a contiguous 1,280-bp region were determined. One complete open reading frame (ORF), designated ORF2, was identified within the sequenced fragment. The 3' end of another ORF, ORF1, was located upstream of ORF2. A noncoding region and a putative promoter were located between ORF1 and ORF2. Downstream from ORF2, the 5' end of another ORF (ORF3) was found. Deduction from the nucleotide sequence indicated that ORF2 encodes a protein of 99 amino acids, which showed high homology with Yersinia enterocolitica Yrp, a regulator of enterotoxin (Y-ST) production; Escherichia coli host factor 1, required for Qbeta-replicase; and Azorhizobium caulinodans NrfA, required for the expression of nifA. ORF2 was designated brg, bacteriocin regulator gene. A fragment containing ORF2 and its promoter was amplified and cloned into pBR322 and pHSG415r, and the recombinant plasmids, pBYL1 and pHYL1, were transferred into E. coli DH5. Plasmid pBYL1 was reisolated and transferred into the insertion mutant TM01A01. Transformants carrying the plasmid, which was reisolated and designated pBYL1, re-produced the low-molecular-weight bacteriocin.  (+info)