(1/10855) Inhibition of in vitro enteric neuronal development by endothelin-3: mediation by endothelin B receptors.

The terminal colon is aganglionic in mice lacking endothelin-3 or its receptor, endothelin B. To analyze the effects of endothelin-3/endothelin B on the differentiation of enteric neurons, E11-13 mouse gut was dissociated, and positive and negative immunoselection with antibodies to p75(NTR )were used to isolate neural crest- and non-crest-derived cells. mRNA encoding endothelin B was present in both the crest-and non-crest-derived cells, but that encoding preproendothelin-3 was detected only in the non-crest-derived population. The crest- and non-crest-derived cells were exposed in vitro to endothelin-3, IRL 1620 (an endothelin B agonist), and/or BQ 788 (an endothelin B antagonist). Neurons and glia developed only in cultures of crest-derived cells, and did so even when endothelin-3 was absent and BQ 788 was present. Endothelin-3 inhibited neuronal development, an effect that was mimicked by IRL 1620 and blocked by BQ 788. Endothelin-3 failed to stimulate the incorporation of [3H]thymidine or bromodeoxyuridine. Smooth muscle development in non-crest-derived cell cultures was promoted by endothelin-3 and inhibited by BQ 788. In contrast, transcription of laminin alpha1, a smooth muscle-derived promoter of neuronal development, was inhibited by endothelin-3, but promoted by BQ 788. Neurons did not develop in explants of the terminal bowel of E12 ls/ls (endothelin-3-deficient) mice, but could be induced to do so by endothelin-3 if a source of neural precursors was present. We suggest that endothelin-3/endothelin B normally prevents the premature differentiation of crest-derived precursors migrating to and within the fetal bowel, enabling the precursor population to persist long enough to finish colonizing the bowel.  (+info)

(2/10855) Primary haemostasis: sticky fingers cement the relationship.

Platelet aggregation to form a haemostatic plug, or thrombus, plays a key role in preventing bleeding from a wound. Recent studies have provided new insights into how platelet receptors are deployed during the interactions with the vascular subendothelial matrix that lead to haemostatic plug formation.  (+info)

(3/10855) Bcl-2 regulates amplification of caspase activation by cytochrome c.

Caspases, a family of specific proteases, have central roles in apoptosis [1]. Caspase activation in response to diverse apoptotic stimuli involves the relocalisation of cytochrome c from mitochondria to the cytoplasm where it stimulates the proteolytic processing of caspase precursors. Cytochrome c release is controlled by members of the Bcl-2 family of apoptosis regulators [2] [3]. The anti-apoptotic members Bcl-2 and Bcl-xL may also control caspase activation independently of cytochrome c relocalisation or may inhibit a positive feedback mechanism [4] [5] [6] [7]. Here, we investigate the role of Bcl-2 family proteins in the regulation of caspase activation using a model cell-free system. We found that Bcl-2 and Bcl-xL set a threshold in the amount of cytochrome c required to activate caspases, even in soluble extracts lacking mitochondria. Addition of dATP (which stimulates the procaspase-processing factor Apaf-1 [8] [9]) overcame inhibition of caspase activation by Bcl-2, but did not prevent the control of cytochrome c release from mitochondria by Bcl-2. Cytochrome c release was accelerated by active caspase-3 and this positive feedback was negatively regulated by Bcl-2. These results provide evidence for a mechanism to amplify caspase activation that is suppressed at several distinct steps by Bcl-2, even after cytochrome c is released from mitochondria.  (+info)

(4/10855) C/EBPalpha regulates generation of C/EBPbeta isoforms through activation of specific proteolytic cleavage.

C/EBPalpha and C/EBPbeta are intronless genes that can produce several N-terminally truncated isoforms through the process of alternative translation initiation at downstream AUG codons. C/EBPbeta has been reported to produce four isoforms: full-length 38-kDa C/EBPbeta, 35-kDa LAP (liver-enriched transcriptional activator protein), 21-kDa LIP (liver-enriched transcriptional inhibitory protein), and a 14-kDa isoform. In this report, we investigated the mechanisms by which C/EBPbeta isoforms are generated in the liver and in cultured cells. Using an in vitro translation system, we found that LIP can be generated by two mechanisms: alternative translation and a novel mechanism-specific proteolytic cleavage of full-length C/EBPbeta. Studies of mice in which the C/EBPalpha gene had been deleted (C/EBPalpha-/-) showed that the regulation of C/EBPbeta proteolysis is dependent on C/EBPalpha. The induction of C/EBPalpha in cultured cells leads to induced cleavage of C/EBPbeta to generate the LIP isoform. We characterized the cleavage activity in mouse liver extracts and found that the proteolytic cleavage activity is specific to prenatal and newborn livers, is sensitive to chymostatin, and is completely abolished in C/EBPalpha-/- animals. The lack of cleavage activity in the livers of C/EBPalpha-/- mice correlates with the decreased levels of LIP in the livers of these animals. Analysis of LIP production during liver regeneration showed that, in this system, the transient induction of LIP is dependent on the third AUG codon and most likely involves translational control. We propose that there are two mechanisms by which C/EBPbeta isoforms might be generated in the liver and in cultured cells: one that is determined by translation and a second that involves C/EBPalpha-dependent, specific proteolytic cleavage of full-length C/EBPbeta. The latter mechanism implicates C/EBPalpha in the regulation of posttranslational generation of the dominant negative C/EBPbeta isoform, LIP.  (+info)

(5/10855) Crystal structures of two H-2Db/glycopeptide complexes suggest a molecular basis for CTL cross-reactivity.

Two synthetic O-GlcNAc-bearing peptides that elicit H-2Db-restricted glycopeptide-specific cytotoxic T cells (CTL) have been shown to display nonreciprocal patterns of cross-reactivity. Here, we present the crystal structures of the H-2Db glycopeptide complexes to 2.85 A resolution or better. In both cases, the glycan is solvent exposed and available for direct recognition by the T cell receptor (TCR). We have modeled the complex formed between the MHC-glycopeptide complexes and their respective TCRs, showing that a single saccharide residue can be accommodated in the standard TCR-MHC geometry. The models also reveal a possible molecular basis for the observed cross-reactivity patterns of the CTL clones, which appear to be influenced by the length of the CDR3 loop and the nature of the immunizing ligand.  (+info)

(6/10855) Role of endothelin in the increased vascular tone of patients with essential hypertension.

We investigated the possible role of endothelin in the increased vasoconstrictor tone of hypertensive patients using antagonists of endothelin receptors. Forearm blood flow (FBF) responses (strain-gauge plethysmography) to intraarterial infusion of blockers of endothelin-A (ETA) (BQ-123) and endothelin-B (ETB) (BQ-788) receptors, separately and in combination, were measured in hypertensive patients and normotensive control subjects. In healthy subjects, BQ-123 alone or in combination with BQ-788 did not significantly modify FBF (P=0.78 and P=0.63, respectively). In hypertensive patients, in contrast, BQ-123 increased FBF by 33+/-7% (P<0.001 versus baseline), and the combination of BQ-123 and BQ-788 resulted in a greater vasodilator response (63+/-12%; P=0.006 versus BQ-123 alone in the same subjects). BQ-788 produced a divergent vasoactive effect in the two groups, with a decrease of FBF (17+/-5%; P=0.004 versus baseline) in control subjects and transient vasodilation (15+/-7% after 20 minutes) in hypertensive patients (P<0.001, hypertensives versus controls). The vasoconstrictor response to endothelin-1 was slightly higher (P=0.04) in hypertensive patients (46+/-4%) than in control subjects (32+/-4%). Our data indicate that patients with essential hypertension have increased vascular endothelin activity, which may be of pathophysiological relevance to their increased vascular tone. In these patients, nonselective ETA and ETB blockade seems to produce a greater vasodilator effect than selective ETA blockade.  (+info)

(7/10855) 99mTc-labeled vasoactive intestinal peptide receptor agonist: functional studies.

Vasoactive intestinal peptide (VIP) is a naturally occurring 28-amino acid peptide with a wide range of biological activities. Recent reports suggest that VIP receptors are expressed on a variety of malignant tumor cells and that the receptor density is higher than for somatostatin. Our aims were to label VIP with 99mTc--a generator-produced, inexpensive radionuclide that possesses ideal characteristics for scintigraphic imaging--and to evaluate 99mTc-VIP for bioactivity and its ability to detect experimental tumors. METHODS: VIP28 was modified at the carboxy terminus by the addition of four amino acids that provided an N4 configuration for a strong chelation of 99mTc. To eliminate steric hindrance, 4-aminobutyric acid (Aba) was used as a spacer. VIP28 was labeled with 1251, which served as a control. Biological activity of the modified VIP28 agonist (TP3654) was examined in vitro using a cell-binding assay and an opossum internal anal sphincter (IAS) smooth muscle relaxivity assay. Tissue distribution studies were performed at 4 and 24 h after injection, and receptor-blocking assays were also performed in nude mice bearing human colorectal cancer LS174T. Blood clearance was examined in normal Sprague-Dawley rats. RESULTS: The yield of 99mTc-TP3654 was quantitative, and the yields of 125I-VIP and 1251-TP3654 were >90%. All in vitro data strongly suggested that the biological activity of 99mTc-TP3654 agonist was equivalent to that of VIP28. As the time after injection increased, radioactivity in all tissues decreased, except in the receptor-enriched tumor (P = 0.84) and in the lungs (P = 0.78). The tumor uptake (0.23 percentage injected dose per gram of tissue [%ID/g]) was several-fold higher than 125I-VIP (0.06 %ID/g) at 24 h after injection in the similar system. In mice treated with unlabeled VIP or TP3654, the uptake of 99mTc-TP3654 decreased in all VIP receptor-rich tissues except the kidneys. The blood clearance was biphasic; the alpha half-time was 5 min and the beta half-time was approximately 120 min. CONCLUSION: VIP28 was modified and successfully labeled with 99mTc. The results of all in vitro examinations indicated that the biological activity of TP3654 was equivalent to that of native VIP28 and tumor binding was receptor specific.  (+info)

(8/10855) Stimulation of phosphorylase kinase autophosphorylation by peptide analogs of phosphorylase.

Autoactivation of phosphorylase kinase in the presence of substrates has been studied to determine the cause of the hysteresis, or lag, in the phosphorylase kinase reaction. Peptide analogs corresponding to the convertible serine region of phosphorylase have been used as low molecular weight alternative substrates. Autophosphorylation of the kinase molecule was measured under conditions that favored autoactivation. Phosphorylase b and a tetradecapeptide, which was found to be a good model of phosphorylase, stimulated autoactivation by 86- and 37-fold, respectively. The tetradecapeptide also stimulated autophosphorylation of subunits A and B of the kinase molecule. This increased autophosphorylation coincided with an increased ability to convert phosphorylase. This finding supports the hypothesis that autophosphorylation is responsible for the lag in the phosphorylase kinase reaction. No evidence was obtained to suggest that the lag could be due to dissociation of the kinase. The stoichiometry of phosphate incorporation into phosphorylase kinase subunits by autophosphorylation was much greater than that reported to occur by protein kinase phosphorylation. Multiple phosphorylation sites in subunit A accounted for most of the phosphate incorporation during autophosphorylation. Saturating levels of hexa- and octapeptide analogs also caused stimulation of autophosphorylation. Possible mechanisms and experimental implications of substrate-stimulated autophosphorylation are discussed. Consideration also is given to the possible role of effectors in autophosphorylation in vivo.  (+info)