Development of the chick olfactory nerve. (1/262)

Gonadotropin releasing hormone (GnRH) is produced and secreted by neurons dispersed throughout the septal-preoptic and anterior hypothalamic areas in adult birds and mammals. These neurons, essential for a functional brain-pituitary-gonadal axis, differentiate in the olfactory placode, the superior aspect of which forms the olfactory epithelium. To reach their final placement within the brain, GnRH neurons migrate out of the epithelium and along the olfactory nerve to the CNS. This nerve is essential for the entrance of GnRH neurons into the CNS. Due to the importance of the nerve for the proper migration of these neurons, we have used immunocytochemistry, DiI labeling and 1 microm serial plastic-embedded sections to characterize the nerve's earliest development in the embryonic chick (stages 17-21). Initially (stage 17) the zone between the placode and prosencephalon is a cellular mass contiguous with the placode. This cluster, known as epithelioid cells, is positive for some but not all neuronal markers studied. The epithelium itself is negative for all neuronal and glial markers at this early stage. By stage 18, the first neurites emerge from the epithelium; this was confirmed at stage 19 by examination of serial 1 microm plastic sections. There is sequential acquisition of immunoreactivity to neuronal markers from stage 18 to 21. The glial component of the nerve appears at stage 21. Axons originating from epithelium, extend to the border of the CNS as confirmed by DiI labeling at stage 21. Small fascicles have entered the CNS at this stage. As previously reported, GnRH neurons begin their migration between stages 20-21 and have also arrived at the border of the brain at stage 21. Despite the penetration of neurites from the olfactory nerve into the CNS, GnRH neurons pause at the nerve-brain junction until stage 29 (2 1/2 days later) before entering the brain. Subsequent studies will examine the nature of the impediment to continued GnRH neuronal migration.  (+info)

Single-channel kinetics of the rat olfactory cyclic nucleotide-gated channel expressed in Xenopus oocytes. (2/262)

Cyclic nucleotide-gated channels are nonselective cation channels activated by intracellular cAMP and/or cGMP. It is not known how the binding of agonists opens the channel, or how the presumed four binding sites, one on each subunit, interact to generate cooperativity. We expressed the rat olfactory cyclic nucleotide-gated channel alpha subunit in Xenopus oocytes and recorded the single-channel currents. The channel had a single conductance state, and flickers at -60 mV showed the same power spectrum for cAMP and cGMP. At steady state, the distribution patterns of open and closed times were relatively simple, containing one or two exponential components. The conductance properties and the dwell-time distributions were adequately described by models that invoke only one or two binding events to open the channel, followed by an additional binding event that prolongs the openings and helps to explain apparent cooperativity. In a comparison between cAMP and cGMP, we find that cGMP has clearly higher binding affinity than cAMP, but only modestly higher probability of inducing the conformational transition that opens the channel.  (+info)

Effects of olfactory stimuli on urge reduction in smokers. (3/262)

This study examined the possibility that exposure to olfactory stimuli can reduce self-reported urge to smoke. After an initial assessment of self-reported urge, nicotine-deprived smokers evaluated the pleasantness of a series of 8 odors. Facial expressions during odor presentations were coded with P. Ekman and W. V. Friesen's (1978a) Facial Action Coding System. After odor administration, participants were exposed to smoking cues. Next, participants were administered their most pleasant, least pleasant, or a control odor (water) and reported their urge to smoke. Results indicated that sniffing either a pleasant or unpleasant odor reduced reported urge to smoke relative to the control odor. Reported pleasantness of the odors did not differentially affect urge reduction. Odors eliciting negative-affect-related expressions, however, were less effective than odors that did not elicit negative-affect-related expressions in reducing reported urge. Results of this preliminary investigation provide support for the consideration of odor stimuli as an approach to craving reduction.  (+info)

Dopamine depresses synaptic inputs into the olfactory bulb. (4/262)

Both observations in humans with disorders of dopaminergic transmission and molecular studies point to an important role for dopamine in olfaction. In this study we found that dopamine receptor activation in the olfactory bulb causes a significant depression of synaptic transmission at the first relay between olfactory receptor neurons and mitral cells. This depression was found to be caused by activation of the D2 subtype of dopamine receptor and was reversible by a specific D2 receptor antagonist. A change in paired-pulse modulation during the depression suggests a presynaptic locus of action. The depression was found to occur independent of synaptic activity. These results provide the first evidence for dopaminergic control of inputs to the main olfactory bulb. The magnitude and locus of dopamine's modulatory capabilities in the bulb suggest important roles for dopamine in odorant processing.  (+info)

Long-term effects on the olfactory system of exposure to hydrogen sulphide. (5/262)

OBJECTIVE: To study chronic effects of hydrogen sulphide (H2S) on cranial nerve I (nervi olfactorii), which have been only minimally described. METHODS: Chemosensations (smell and taste) were evaluated in eight men who complained of continuing dysfunction 2-3 years after the start of occupational exposure to H2S. Various bilateral (both nostrils) and unilateral (one nostril at a time) odour threshold tests with standard odorants as well as the Chicago smell test, a three odour detection and identification test and the University of Pennsylvania smell identification test, a series of 40 scratch and sniff odour identification tests were administered. RESULTS: Six of the eight patients showed deficits of various degrees. Two had normal scores on objective tests, but thought that they continued to have problems. H2S apparently can cause continuing, sometimes unrecognised olfactory deficits. CONCLUSION: Further exploration into the extent of such problems among workers exposed to H2S is warranted.  (+info)

Sites of plasticity in the neural circuit mediating tentacle withdrawal in the snail Helix aspersa: implications for behavioral change and learning kinetics. (6/262)

The tentacle withdrawal reflex of the snail Helix aspersa exhibits a complex combination of habituation and sensitization consistent with the dual-process theory of plasticity. Habituation, sensitization, or a combination of both were elicited by varying stimulation parameters and lesion condition. Analysis of response plasticity shows that the late phase of the response is selectively enhanced by sensitization, whereas all phases are decreased by habituation. Previous data have shown that tentacle withdrawal is mediated conjointly by parallel monosynaptic and polysynaptic pathways. The former mediates the early phase, whereas the latter mediates the late phase of the response. Plastic loci were identified by stimulating and recording at different points within the neural circuit, in combination with selective lesions. Results indicate that depression occurs at an upstream locus, before circuit divergence, and is therefore expressed in all pathways, whereas facilitation requires downstream facilitatory neurons and is selectively expressed in polysynaptic pathways. Differential expression of plasticity between pathways helps explain the behavioral manifestation of depression and facilitation. A simple mathematical model is used to show how serial positioning of depression and facilitation can explain the kinetics of dual-process learning. These results illustrate how the position of cellular plasticity in the network affects behavioral change and how forms of plasticity can interact to determine the kinetics of the net changes.  (+info)

Relationships between odor-elicited oscillations in the salamander olfactory epithelium and olfactory bulb. (7/262)

Oscillations in neuronal population activity, or the synchronous neuronal spiking that underlies them, are thought to play a functional role in sensory processing in the CNS. In the olfactory system, stimulus-induced oscillations are observed both in central processing areas and in the peripheral receptor epithelium. To examine the relationship between these peripheral and central oscillations, we recorded local field potentials simultaneously from the olfactory epithelium and olfactory bulb in tiger salamanders (Ambystoma tigrinum). Stimulus-induced oscillations recorded at these two sites were matched in frequency and slowed concurrently over the time course of the response, suggesting that the oscillations share a common source or are modulated together. Both the power and duration of oscillations increased over a range of amyl acetate concentrations from 2.5 x 10(-2) to 1 x 10(-1) dilution of saturated vapor, but peak frequency was not affected. The frequency of the oscillation did vary with different odorant compounds in both olfactory epithelium and bulb (OE and OB): amyl acetate, ethyl fenchol and d-carvone elicited oscillations of significantly different frequencies, and there was no difference in OE and OB oscillation frequencies. No change in the power or frequency of OE oscillations was observed after sectioning the olfactory nerve, indicating that the OE oscillations have a peripheral source. Finally, application of 1.0 and 10 microM tetrodotoxin to the epithelium blocked OE oscillations in a dose-dependent and reversible manner, suggesting that peripheral olfactory oscillations are related to receptor neuron spiking.  (+info)

Transplantation of human olfactory ensheathing cells elicits remyelination of demyelinated rat spinal cord. (8/262)

Human olfactory ensheathing cells (OECs) were prepared from adult human olfactory nerves, which were removed during surgery for frontal base tumors, and were transplanted into the demyelinated spinal cord of immunosuppressed adult rats. Extensive remyelination was observed in the lesion site: In situ hybridization using a human DNA probe (COT-1) indicated a similar number of COT-1-positive cells and OEC nuclei within the repaired lesion. The myelination was of a peripheral type with large nuclei and cytoplasmic regions surrounding the axons, characteristic of Schwann cell and OEC remyelination. These results provide evidence that adult human OECs are able to produce Schwann cell-like myelin sheaths around demyelinated axons in the adult mammalian CNS in vivo.  (+info)