Dopamine receptor subtypes modulate olfactory bulb gamma-aminobutyric acid type A receptors. (1/1923)

The gamma-aminobutyric acid type A (GABAA) receptor is the predominant Cl- channel protein mediating inhibition in the olfactory bulb and elsewhere in the mammalian brain. The olfactory bulb is rich in neurons containing both GABA and dopamine. Dopamine D1 and D2 receptors are also highly expressed in this brain region with a distinct and complementary distribution pattern. This distribution suggests that dopamine may control the GABAergic inhibitory processing of odor signals, possibly via different signal-transduction mechanisms. We have observed that GABAA receptors in the rat olfactory bulb are differentially modulated by dopamine in a cell-specific manner. Dopamine reduced the currents through GABA-gated Cl- channels in the interneurons, presumably granule cells. This action was mediated via D1 receptors and involved phosphorylation of GABAA receptors by protein kinase A. Enhancement of GABA responses via activation of D2 dopamine receptors and phosphorylation of GABAA receptors by protein kinase C was observed in mitral/tufted cells. Decreasing or increasing the binding affinity for GABA appears to underlie the modulatory effects of dopamine via distinct receptor subtypes. This dual action of dopamine on inhibitory GABAA receptor function in the rat olfactory bulb could be instrumental in odor detection and discrimination, olfactory learning, and ultimately odotopic memory formation.  (+info)

Adult subventricular zone neuronal precursors continue to proliferate and migrate in the absence of the olfactory bulb. (2/1923)

Neurons continue to be born in the subventricular zone (SVZ) of the lateral ventricles of adult mice. These cells migrate as a network of chains through the SVZ and the rostral migratory stream (RMS) into the olfactory bulb (OB), where they differentiate into mature neurons. The OB is the only known target for these neuronal precursors. Here, we show that, after elimination of the OB, the SVZ and RMS persist and become dramatically larger. The proportion of dividing [bromodeoxyuridine (BrdU)-labeled] or dying (pyknotic or terminal deoxynucleotidyl transferase-mediated biotinylated UTP nick end-labeled) cells in the RMS was not significantly affected at 3 d or 3 weeks after bulbectomy (OBX). However, by 3 months after OBX, the percentage of BrdU-labeled cells in the RMS decreased by half and that of dying cells doubled. Surprisingly, the rostral migration of precursors continued along the RMS after OBX. This was demonstrated by focal microinjections of BrdU and grafts of SVZ cells carrying LacZ under the control of a neuron-specific promoter gene. Results indicate that the OB is not essential for proliferation and the directional migration of SVZ precursors.  (+info)

Modeling geriatric depression in animals: biochemical and behavioral effects of olfactory bulbectomy in young versus aged rats. (3/1923)

Geriatric depression exhibits biological and therapeutic differences relative to early-onset depression. We studied olfactory bulbectomy (OBX), a paradigm that shares major features of human depression, in young versus aged rats to determine mechanisms underlying these differences. Young OBX rats showed locomotor hyperactivity and a loss of passive avoidance and tactile startle. In contrast, aged OBX animals maintained avoidance and startle responses but showed greater locomotor stimulation; the aged group also exhibited decreased grooming and suppressed feeding with novel presentation of chocolate milk, effects which were not seen in young OBX. These behavioral contrasts were accompanied by greater atrophy of the frontal/parietal cortex and midbrain in aged OBX. Serotonin transporter sites were increased in the cortex and hippocampus of young OBX rats, but were decreased in the aged OBX group. Cell signaling cascades also showed age-dependent effects, with increased adenylyl cyclase responses to monoaminergic stimulation in young OBX but no change or a decrease in aged OBX. These data indicate that there are biological distinctions in effects of OBX in young and aged animals, which, if present in geriatric depression, provide a mechanistic basis for differences in biological markers and drug responses. OBX may provide a useful animal model with which to test therapeutic interventions for geriatric depression.  (+info)

Combinatorial receptor codes for odors. (4/1923)

The discriminatory capacity of the mammalian olfactory system is such that thousands of volatile chemicals are perceived as having distinct odors. Here we used a combination of calcium imaging and single-cell RT-PCR to identify odorant receptors (ORs) for odorants with related structures but varied odors. We found that one OR recognizes multiple odorants and that one odorant is recognized by multiple ORs, but that different odorants are recognized by different combinations of ORs. Thus, the olfactory system uses a combinatorial receptor coding scheme to encode odor identities. Our studies also indicate that slight alterations in an odorant, or a change in its concentration, can change its "code," potentially explaining how such changes can alter perceived odor quality.  (+info)

Vertebrate slit, a secreted ligand for the transmembrane protein roundabout, is a repellent for olfactory bulb axons. (5/1923)

The olfactory bulb plays a central role in olfactory information processing through its connections with both peripheral and cortical structures. Axons projecting from the olfactory bulb to the telencephalon are guided by a repulsive activity in the septum. The molecular nature of the repellent is not known. We report here the isolation of vertebrate homologs of the Drosophila slit gene and show that Slit protein binds to the transmembrane protein Roundabout (Robo). Slit is expressed in the septum whereas Robo is expressed in the olfactory bulb. Functionally, Slit acts as a chemorepellent for olfactory bulb axons. These results establish a ligand-receptor relationship between two molecules important for neural development, suggest a role for Slit in olfactory bulb axon guidance, and reveal the existence of a new family of axon guidance molecules.  (+info)

Comparative anatomy of the vomeronasal organ complex in bats. (6/1923)

The morphology of the vomeronasal organ complex was histologically described in eight out of fourteen chiropteran species investigated. Of the six families examined, all except the family Pteropodidae (suborder Megachiroptera) were found to have at least one member possessing the organ. The organ is best developed in phyllostomatids. It is absent in vespertilionids (including a Myotis embryo) except in Miniopterus. An accessory olfactory bulb is reported for the first time in the latter. The organ is described for the first time in Rhinopoma, Megaderma, and Hipposideros. The organ in Rhinolophus is also described. Homologous anterior nasal cartilages and patent nasopalatine ducts are present in all species. The organ occupies the anterior ventral nasal septum region. In Megaderma and Hipposideros it is level with the nasal cavity floor. Areas of epithelium similar to olfactory epithelium have been observed in some organs. Epithelia, vascular sinuses, vomeronasal nerves, paravomeronasal ganglia, accessory olfactory bulbs, and vomeronasal glands have been investigated. In bats with regressed or rudimentary organs (Megaderma, Rhinopoma, Rhinolophus, Hipposideros) accessory olfactory bulbs could not be identified. Thus, presence of the organ does not necessarily indicate presence of the accessory olfactory bulb. Septal pockets located superior to the organ complex and lined with pseudostratified columnar epithelium are described in Hipposideros and may play a part in nasophonation. A unique role is proposed for the organ in the feeding behaviour of Desmodus. The desirability of extending the useful terms 'diosmatic' and 'monosmatic' to all vertebrates in reference to their respective possession or lack of the vomeronasal organ is suggested.  (+info)

GABA(B) receptor-mediated stimulation of adenylyl cyclase activity in membranes of rat olfactory bulb. (7/1923)

Previous studies have shown that GABA(B) receptors facilitate cyclic AMP formation in brain slices likely through an indirect mechanism involving intracellular second messengers. In the present study, we have investigated whether a positive coupling of GABA(B) receptors to adenylyl cyclase could be detected in a cell-free preparation of rat olfactory bulb, a brain region where other Gi/Go-coupled neurotransmitter receptors have been found to stimulate the cyclase activity. The GABA(B) receptor agonist (-)-baclofen significantly increased basal adenylyl cyclase activity in membranes of the granule cell and external plexiform layers, but not in the olfactory nerve-glomerular layer. The adenylyl cyclase stimulation was therefore examined in granule cell layer membranes. The (-)-baclofen stimulation (pD2=4.53) was mimicked by 3-aminopropylphosphinic acid (pD2=4.60) and GABA (pD2=3.56), but not by (+)-baclofen, 3-aminopropylphosphonic acid, muscimol and isoguvacine. The stimulatory effect was counteracted by the GABA(B) receptor antagonists CGP 35348 (pA2=4.31), CGP 55845 A (pA2=7.0) and 2-hydroxysaclofen (pKi=4.22). Phaclofen (1 mM) was inactive. The (-)-baclofen stimulation was not affected by quinacrine, indomethacin, nordihydroguaiaretic acid and staurosporine, but was completely prevented by pertussis toxin and significantly reduced by the alpha subunit of transducin, a betagamma scavenger. The betagamma subunits of transducin stimulated the cyclase activity and this effect was not additive with that produced by (-)-baclofen. In the external plexiform and granule cell layers, but not in the olfactory nerve-glomerular layer, (-)-baclofen enhanced the adenylyl cyclase stimulation elicited by the neuropeptide pituitary adenylate cyclase activating polypeptide (PACAP) 38. Conversely, the adenylyl cyclase activity stimulated by either forskolin or Ca2+/calmodulin-(Ca2+/CaM) was inhibited by (-)-baclofen in all the olfactory bulb layers examined. These data demonstrate that in specific layers of rat olfactory bulb activation of GABA(B) receptors enhances basal and neurotransmitter-stimulated adenylyl cyclase activities by a mechanism involving betagamma subunits of Gi/Go. This positive coupling is associated with a widespread inhibitory effect on forskolin- and Ca2+/CaM-stimulated cyclic AMP formation.  (+info)

Slit2-Mediated chemorepulsion and collapse of developing forebrain axons. (8/1923)

Diffusible chemorepellents play a major role in guiding developing axons toward their correct targets by preventing them from entering or steering them away from certain regions. Genetic studies in Drosophila revealed a novel repulsive guidance system that prevents inappropriate axons from crossing the CNS midline; this repulsive system is mediated by the Roundabout (Robo) receptor and its secreted ligand Slit. In rodents, Robo and Slit are expressed in the spinal cord and Slit can repel spinal motor axons in vitro. Here, we extend these findings into higher brain centers by showing that Robo1 and Robo2, as well as Slit1 and Slit2, are often expressed in complementary patterns in the developing forebrain. Furthermore, we show that human Slit2 can repel olfactory and hippocampal axons and collapse their growth cones.  (+info)