Successful removal of intracavernous neurinoma originating from the oculomotor nerve--case report. (41/219)

An oculomotor neurinoma was confirmed intraoperatively to be located in the lateral wall of the cavernous sinus in a 55-year-old male. By protruding into the true venous cavity, it caused obliteration of the blood flow in the cavernous sinus. The tumor was totally removed without entering the true venous cavity of the cavernous sinus. The cavernous sinus was closed by suturing the dural membrane to the thin fibrous membrane, preventing intraoperative bleeding.  (+info)

Plus-minus lid syndrome. (42/219)

A patient presented with ipsilateral ptosis and contralateral superior eyelid retraction due to a nuclear third nerve syndrome. The CT brain scan revealed a paramedian mesencephalic lesion contiguous with the oculomotor nucleus, sparing the midbrain tectum and the posterior commissure.  (+info)

History dependence of rate covariation between neurons during persistent activity in an oculomotor integrator. (43/219)

Persistent firing in response to a brief stimulus is a neural correlate of short-term memory in a variety of systems. In the oculomotor neural integrator, persistent firing that encodes eye position is maintained in response to transient saccadic eye-velocity commands. To a first approximation, firing rates in the integrator vary linearly with eye position. Thus, viewed across many cells, the pattern of persistent firing in the integrator may be constrained to a unique line of stable states. Here this idea was tested by examining the relationship between firing rates of simultaneously recorded neurons. Paired recordings were obtained in awake goldfish from neurons in hindbrain area I, an essential part of the horizontal eye-position integrator. During spontaneous eye movements consisting of sequential fixations at different horizontal positions, the pair relationship between the majority of cells on the same side of the integrator was not unique: for a given rate of one cell, the rate of the paired cell assumed different values that depended systematically on the preceding saccade history. This finding suggests that the set of persistent firing states that encode eye position is not constrained to a unique line, and that models with stable states restricted to a such a line need to be modified accordingly.  (+info)

Both neural crest and placode contribute to the ciliary ganglion and oculomotor nerve. (44/219)

The chick ciliary ganglion is a neural crest-derived parasympathetic ganglion that innervates the eye. Here, we examine its axial level of origin and developmental relationship to other ganglia and nerves of the head. Using small, focal injections of DiI, we show that neural crest cells arising from both the caudal half of the midbrain and the rostral hindbrain contribute to the ciliary as well as the trigeminal ganglion. Precursors to both ganglia have overlapping migration patterns, moving first ventrolaterally and then rostrally toward the optic vesicle. At the level of the midbrain/forebrain junction, precursors to the ciliary ganglion separate from the main migratory stream, turn ventromedially, and condense in the vicinity of the rostral aorta and Rathke's pouch. Ciliary neuroblasts first exit the cell cycle at early E2, prior to and during ganglionic condensation, and neurogenesis continues through E5.5. By E3, markers of neuronal differentiation begin to appear in this population. By labeling the ectoderm with DiI, we discovered a new placode, caudal to the eye and possibly contiguous to the trigeminal placode, that contributes a few early differentiating neurons to the ciliary ganglion, oculomotor nerve, and connecting branches to the ophthalmic nerve. These results suggest for the first time a dual neural crest and placodal contribution to the ciliary ganglion and associated nerves.  (+info)

Evidence that urocortin is absent from neurons of the Edinger-Westphal nucleus in pigeons. (45/219)

The Edinger-Westphal nucleus (EWN) is a central preganglionic parasympathetic cell group that gives rise to cholinergic input to the ciliary ganglion, thereby regulating several neurovegetative ocular functions. Recently, the supposed presence of the neuropeptide urocortin (UCN) has been reported in EWN neurons in rodent brain. The purpose of the present study was to examine the distribution of UCN in avian brain and to investigate by immunohistochemical analysis the possible use of this substance as an EWN marker in a non-mammalian class of vertebrates. Brain tissue of pigeons was incubated with a specific antibody against UCN and the results showed labeling of many small neurons, forming a double wing in the dorsal mesodiencephalic transition area. Their size and shape, however, differed from those of EWN neurons, and they were preferentially located rostral to the EWN. Double-label experiments employing an antibody against the enzyme choline acetyltransferase (ChAT) showed that UCN is not localized to the cholinergic cells of the EWN and confirmed the rostral distributionof UCN never overlapping the ChAT+ EWN cells. Taken together, these results suggest that, at least in pigeons, the UCN+ population does not belong to the traditionally defined EWN.  (+info)

Spontaneous eye movements in goldfish: oculomotor integrator performance, plasticity, and dependence on visual feedback. (46/219)

To quantify performance of the goldfish oculomotor neural integrator and determine its dependence on visual feedback, we measured the relationship between eye drift-velocity and position during spontaneous gaze fixations in the light and in the dark. In the light, drift-velocities were typically less than 1 deg/s, similar to those observed in humans. During brief periods in darkness, drift-velocities were only slightly larger, but showed greater variance. One hour in darkness degraded fixation-holding performance. These findings suggest that while visual feedback is not essential for online fixation stability, it may be used to tune the mechanism of persistent neural activity in the oculomotor integrator.  (+info)

Second-order vestibular neurons form separate populations with different membrane and discharge properties. (47/219)

Membrane and discharge properties were determined in second-order vestibular neurons (2 degrees VN) in the isolated brain of grass frogs. 2 degrees VN were identified by monosynaptic excitatory postsynaptic potentials after separate electrical stimulation of the utricular nerve, the lagenar nerve, or individual semicircular canal nerves. 2 degrees VN were classified as vestibulo-ocular or -spinal neurons by the presence of antidromic spikes evoked by electrical stimulation of the spinal cord or the oculomotor nuclei. Differences in passive membrane properties, spike shape, and discharge pattern in response to current steps and ramp-like currents allowed a differentiation of frog 2 degrees VN into two separate, nonoverlapping types of vestibular neurons. A larger subgroup of 2 degrees VN (78%) was characterized by brief, high-frequency bursts of up to five spikes and the absence of a subsequent continuous discharge in response to positive current steps. In contrast, the smaller subgroup of 2 degrees VN (22%) exhibited a continuous discharge with moderate adaptation in response to positive current steps. The differences in the evoked spike discharge pattern were paralleled by differences in passive membrane properties and spike shapes. Despite these differences in membrane properties, both types, i.e., phasic and tonic 2 degrees VN, occupied similar anatomical locations and displayed similar afferent and efferent connectivities. Differences in response dynamics of the two types of 2 degrees VN match those of their pre- and postsynaptic neurons. The existence of distinct populations of 2 degrees VN that differ in response dynamics but not in the spatial organization of their afferent inputs and efferent connectivity to motor targets suggests that frog 2 degrees VN form one part of parallel vestibulomotor pathways.  (+info)

Purkinje cell spike firing in the posterolateral cerebellum: correlation with visual stimulus, oculomotor response, and error feedback. (48/219)

Complex (CS)- and simple-spike (SS) discharge from single Purkinje cells (Pc) in the posterolateral cerebellum of two monkeys was recorded during a visually guided reach-touch task. A visual target appeared (TA) off-gaze at a random location on a screen. On initiation of arm reach, the target disappeared, then reappeared (TR) after a fixed delay. TR was either at the same location (baseline condition) or a shifted location at a fixed distance and direction from TA location (shift condition). Across trials, we observed one or two peaks of CS activity, depending on the reach condition. The first CS (T1 CS) peak was tuned to the location of TA on the screen, following TA by approximately 150 ms. The second CS (T2 CS) peak occurred only in the shift condition, was tuned to the shift location of TR, and followed TR by approximately 150 ms. The locational preferences of T1 and T2 CS peaks were the same. T1 and T2 CSs preceded saccades to TA and TR at the preferred location and occurred during reaches with either arm. T1 CSs occurred during trials in which the target appeared, and there was a saccade to target, but no subsequent arm reach followed. SS firing varied with TA/TR in the same preferred location as for the accompanying CS. We conclude that posterolateral Pc CS and SS firing changes following an off-gaze visual target appearance in a preferred location when there is a subsequent saccade to that location.  (+info)