Eye movements in Daphnia pulex (De Geer). (49/604)

1. The various types of eye movement exhibited by the cyclopean eye of Daphnia pulex were studied using high speed motion photography. 2. This rudimentary eye, which consists of only 22 ommatidia, can move through approximately 150 degrees in the sagittal plane and 60 degrees in the horizontal plane. 3. Four classes of eye movement were found: (1) a high speed tremor at 16 Hz with an amplitude of 3-4 degrees, which resembles physiological nystagmus, (2) a slow rhythmic scanning movement at 4 Hz, and 5-6 degrees amplitude, (3) large fast eye movements similar to saccadic eye movements and (4) optokinetic nystagmus produced by moving striped patterns. 4. Where the fast tremor occurred concurrently with the slow rhythmic scan, a Fourier analysis revealed that the former was the fourth harmonic of the latter.  (+info)

Safety levels for exposure of cornea and lens to very high-frequency ultrasound. (50/604)

OBJECTIVE: Very high-frequency (50-MHz) ultrasound is widely used for imaging the anterior segment of the eye. Our aim was to determine whether exposures to ultrasound at and above those used in diagnostic imaging systems might cause bioeffects in ocular tissues. METHODS: We characterized the output parameters of a polyvinylidene difluoride transducer using a needle hydrophone. We exposed sites on the cornea or lens of rabbits for up to 30 minutes at a 10-kHz pulse repetition frequency. Tissue obtained immediately or 24 hours after exposure was examined by light microscopy. A numeric model was implemented to calculate expected temperature elevations in the cornea and lens under experimental conditions. RESULTS: No tissue changes were observed directly or by slit lamp. Light microscopy showed no abnormalities attributable to ultrasound exposure. Simulations showed that even long-term exposures should produce temperature elevations of less than 1 degree C in both the cornea and lens. CONCLUSION: With the use of exposure parameters 4 to 5 orders of magnitude greater than encountered in a clinical situation, no tissue changes were observed. This is consistent with the small (0.2 degrees C) temperature rises computed in simulations. The lack of biological effects is attributable to the small dimensions of the focal zone, allowing rapid dissipation of heat, and the low total acoustic power produced by the transducer.  (+info)

Reconstructing the eyes of Urbilateria. (51/604)

The shared roles of Pax6 and Six homologues in the eye development of various bilaterians suggest that Urbilateria, the common ancestors of all Bilateria, already possessed some simple form of eyes. Here, we re-address the homology of bilaterian cerebral eyes at the level of eye anatomy, of eye-constituting cell types and of phototransductory molecules. The most widespread eye type found in Bilateria are the larval pigment-cup eyes located to the left and right of the apical organ in primary, ciliary larvae of Protostomia and Deuterostomia. They can be as simple as comprising a single pigment cell and a single photoreceptor cell in inverse orientation. Another more elaborate type of cerebral pigment-cup eyes with an everse arrangement of photoreceptor cells is found in adult Protostomia. Both inverse larval and everse adult eyes employ rhabdomeric photoreceptor cells and thus differ from the chordate cerebral eyes with ciliary photoreceptors. This is highly significant because on the molecular level we find that for phototransduction rhabdomeric versus ciliary photoreceptor cells employ divergent rhodopsins and non-orthologous G-proteins, rhodopsin kinases and arrestins. Our comparison supports homology of cerebral eyes in Protostomia; it challenges, however, homology of chordate and non-chordate cerebral eyes that employ photoreceptor cells with non-orthologous phototransductory cascades.  (+info)

Human ocular dominance columns as revealed by high-field functional magnetic resonance imaging. (52/604)

We mapped ocular dominance columns (ODCs) in normal human subjects using high-field (4 T) functional magnetic resonance imaging (fMRI) with a segmented echo planar imaging technique and an in-plane resolution of 0.47 x 0.47 mm(2). The differential responses to left or right eye stimulation could be reliably resolved in anatomically well-defined sections of V1. The orientation and width ( approximately 1 mm) of mapped ODC stripes conformed to those previously revealed in postmortem brains stained with cytochrome oxidase. In addition, we showed that mapped ODC patterns could be largely reproduced in different experiments conducted within the same experimental session or over different sessions. Our results demonstrate that high-field fMRI can be used for studying the functions of human brains at columnar spatial resolution.  (+info)

Ocular responses to head rotations during mirror viewing. (53/604)

The gain of the human vestibuloocular reflex (VOR) is influenced by the proximity of the object of regard. In six human subjects, we measured the eye rotations induced by passive, sinusoidal, horizontal head rotations at 2.0 Hz during binocular fixation of a stationary far target at 7 m; a stationary target close to the subject's near point of fixation (<15 cm); and the bridge of the subject's own nose, viewed through a mirror positioned so that, for each subject, the angle of vergence was similar to that during viewing of the near target. The median gain of compensatory eye movements for the group of subjects during far viewing was 0.99 (range 0.80-1.04), during near viewing was 1.21 (range 0.88-1.47), and during mirror viewing was 0.85 (range 0.71-1.01). The gain during near and mirror viewing was significantly different for each subject (P < 0.001) even though the vergence angles were similar. The lower gain values during mirror viewing can be attributed to the geometric relationship between the head rotation, the position of the eyes in the head, and the movement of the subject's virtual image in the mirror. To determine whether visually mediated eye movements were responsible for the observed gain values, we conducted a control experiment in which subjects were rotated using a sum-of-sines stimulus that minimized the effects of predictive visual tracking; differences of gain values between near- and mirror-viewing conditions were similar to those during rotation at 2 Hz. We conclude that, in these experiments, target proximity and vergence angle were not the key determinants of gain of the visuo-vestibular response during head rotation while viewing a near target but that contextual cues from motion vision were more important in generating the appropriate response.  (+info)

Gene transfer mediated by recombinant baculovirus into mouse eye. (54/604)

PURPOSE: To determine the efficiency of baculoviruses (BVs) to transfer recombinant genes in vivo into murine ocular tissues. METHODS: Recombinant (r)BVs carrying fluorescent protein (FP) cDNA under the control of cytomegalovirus (CMV) immediate early promoter were constructed. Initially, cultured HEK293 and ARPE19 cells were infected with these rBVs and analyzed for efficiency and stability of transgene expression. The rBV-CMV green (G)FP was also injected into the intravitreal and subretinal space of mouse eye. Mice were periodically analyzed to determine the efficiency and stability of expression by histologic examination under fluorescence microscopy. The effect of rBV-CMV-GFP on the physiology of the retina was analyzed by electroretinography. RESULTS: cDNAs encoding fluorescent proteins were efficiently transduced in HEK293 and ARPE19 cells in vitro. GFP expression in vivo was observed exclusively in retinal pigment epithelial (RPE) cells after subretinal injections. Intravitreal injections of rBV resulted in GFP expression in the corneal endothelium, lens, RPE, and retina. GFP expression was observed for up to 14 days after injection. The infiltration of macrophages, observed 2 days after injection in the area of GFP transduction, had dissipated by day 8 after injection. No alteration in ERG responses was observed 6 weeks after injection of rBV-CMV-GFP. CONCLUSIONS: BV efficiently transduces cultured RPE cells and many cell types in vivo in the eye, including endothelial, epithelial, and neuronal cells. BV may be a useful vector for transferring genes in cultured cells and in vivo into ocular tissue.  (+info)

Ultraviolet and green receptors in principal eyes of jumping spiders. (55/604)

Spectral sensitivities of cells in principal eyes of the jumping spider Phidippus reqius were measured using techniques of intracellular recording. Three types of cells were found. UV cells had peak sensitivities at 370 nm and were over 4 log units less sensitive at wavelengths longer than 460 nm. Green-sensitive cells had spectral sensitivities which were well fit by nomogram curves peaking at 532 nm. UV-green cells had dual peaks of sensitivity at about 370 and 525 nm, but the ratios of UV-to-green sensitivities varied over a 40: 1 range from cell to cell. Moreover, responses of UV-green cells to flashes of UV light were slower than to flashes of green light. Segregation of receptor types into the known layers of receptors in these eyes could not be shown. It is concluded that jumping spiders have the potential for dichromatic color vision.  (+info)

Modulation of the Ras/MAPK signalling pathway by the redox function of selenoproteins in Drosophila melanogaster. (56/604)

Modulation of reactive oxygen species (ROS) plays a key role in signal transduction pathways. Selenoproteins act controlling the redox balance of the cell. We have studied how the alteration of the redox balance caused by patufet (selD(ptuf)), a null mutation in the Drosophila melanogaster selenophosphate synthetase 1 (sps1) gene, which codes for the SelD enzyme of the selenoprotein biosynthesis, affects the Ras/MAPK signalling pathway. The selD(ptuf) mutation dominantly suppresses the phenotypes in the eye and the wing caused by hyperactivation of the Ras/MAPK cassette and the activated forms of the Drosophila EGF receptor (DER) and Sevenless (Sev) receptor tyrosine kinases (RTKs), which signal in the eye and wing, respectively. No dominant interaction is observed with sensitized conditions in the Wnt, Notch, Insulin-Pi3K, and DPP signalling pathways. Our current hypothesis is that selenoproteins selectively modulate the Ras/MAPK signalling pathway through their antioxidant function. This is further supported by the fact that a selenoprotein-independent increase in ROS caused by the catalase amorphic Cat(n1) allele also reduces Ras/MAPK signalling. Here, we present the first evidence for the role of intracellular redox environment in signalling pathways in Drosophila as a whole organism.  (+info)