Association of human origin recognition complex 1 with chromatin DNA and nuclease-resistant nuclear structures. (57/1530)

An origin recognition complex (ORC) consisting of six polypeptides has been identified as a DNA replication origin-binding factor in Saccharomyces cerevisiae. Homologues of ORC subunits have been discovered among eukaryotes, and we have prepared monoclonal antibodies against a human homologue of ORC1 (hORC1) to study its localization in human cells. It was thus found to associate with nuclei throughout the cell cycle and to be resistant to nonionic detergent treatment, in contrast to MCM proteins, which are other replication factors, the association of which with nuclei is clearly dependent on the phase of the cell cycle. A characteristic feature of hORC1 is dissociation by NaCl in a narrow concentration range around 0.25 M, suggesting interaction with some specific partner(s) in nuclei. Nuclease treatment experiments and UV cross-linking experiments further indicated interaction with both nuclease-resistant nuclear structures and chromatin DNA. Although its DNA binding was unaffected, some variation in the cell cycle was apparent, the association with nuclear structures being less stable in the M phase. Interestingly, the less stable association occurred concomitantly with hyperphosphorylation of hORC1, suggesting that this hyperphosphorylation may be involved in M phase changes.  (+info)

Establishment of plasma membrane polarity in mammary epithelial cells correlates with changes in prolactin trafficking and in annexin VI recruitment to membranes. (58/1530)

Mammary epithelial cells (MEC) of lactating animals ferry large amounts of milk constituents in vesicular structures which have mostly been characterized by morphological approaches (Ollivier-Bousquet, 1998). Recently, we have shown that under conditions of lipid deprivation, perturbed prolactin traffic paralleled changes in the membrane phospholipid composition and in the cytosol versus membrane distribution of annexin VI (Ollivier-Bousquet et al., 1997). To obtain additional information on the membrane events involved in the vesicular transport of the hormone to the apical pole of the cell, we conducted a biochemical study on prolactin-containing vesicles in MEC at two different stages of differentiation. We first showed that MEC of pregnant and lactating rabbits exhibited membrane characteristics of non-polarized and polarized cells respectively, using annexin IV and the alpha-6 subunit of integrin as membrane markers. Incubation of both cell types with biotinylated prolactin for 1 h at 15 degrees C, followed by a 10-min chase at 37 degrees C revealed that prolactin transport was activated upon MEC membrane polarization. This was confirmed by subcellular fractionation of prolactin-containing vesicles on discontinuous density gradients. In non-polarized MEC, (125)I-prolactin was mainly recovered in gradient fractions enriched with endocytotic vesicles either after incubation at 15 degrees C or after a 10-min chase at 37 degrees C. In contrast, in polarized MEC, the hormone switched from endocytotic compartments to a fraction enriched in exocytotic clathrin-coated vesicles during the 10-min chase at 37 degrees C. Association of annexin VI to prolactin carriers was next studied in both non-polarized and polarized cells. Membrane compartments collected at each gradient interface were solubilized under mild conditions by Triton X-100 (TX100) and the distribution of annexin VI in TX100-insoluble and TX100-soluble fractions was analyzed by Western blotting. Upon MEC polarization, the amount of annexin VI recovered in TX100-insoluble fractions changed. Quite interestingly, it increased in a membrane fraction enriched with endocytotic clathrin-coated vesicles, suggesting that annexin VI may act as a sorting signal in prolactin transport.  (+info)

Specific proteins are required to translocate phosphatidylcholine bidirectionally across the endoplasmic reticulum. (59/1530)

BACKGROUND: A long-standing problem in understanding the mechanism by which the phospholipid bilayer of biological membranes is assembled concerns how phospholipids flip back and forth between the two leaflets of the bilayer. This question is important because phospholipid biosynthetic enzymes typically face the cytosol and deposit newly synthesized phospholipids in the cytosolic leaflet of biogenic membranes such as the endoplasmic reticulum (ER). These lipids must be transported across the bilayer to populate the exoplasmic leaflet for membrane growth. Transport does not occur spontaneously and it is presumed that specific membrane proteins, flippases, are responsible for phospholipid flip-flop. No biogenic membrane flippases have been identified and there is controversy as to whether proteins are involved at all, whether any membrane protein is sufficient, or whether non-bilayer arrangements of lipids support flip-flop. RESULTS: To test the hypothesis that specific proteins facilitate phospholipid flip-flop in the ER, we reconstituted transport-active proteoliposomes from detergent-solubilized ER vesicles under conditions in which protein-free liposomes containing ER lipids were inactive. Transport was measured using a synthetic, water-soluble phosphatidylcholine and was found to be sensitive to proteolysis and associated with proteins or protein-containing complexes that sedimented operationally at 3.8S. Chromatographic analyses indicated the feasibility of identifying the transporter(s) by protein purification approaches, and raised the possibility that at least two different proteins are able to facilitate transport. Calculations based on a simple reconstitution scenario suggested that the transporters represent approximately 0.2% of ER membrane proteins. CONCLUSIONS: Our results clearly show that specific proteins are required to translocate a phosphatidylcholine analogue across the ER membrane. These proteins are likely to be the flippases, which are required to translocate natural phosphatidylcholine and other phospholipids across the ER membrane. The methodology that we describe paves the way for identification of a flippase.  (+info)

Histopathological study of the effects of a single intratracheal instillation of surface active agents on lung in rats. (60/1530)

Pulmonary drug administration of most peptide/protein drugs is characterized by low bioavailability due to low permeability. Surface active agents have been tested as an absorption enhancer, but few studies have been carried out on the local toxicity of these additives. In the present study, to clarify the toxic effects of surface active agents on the lung, a relatively high concentration (1%) of polyoxyethylene 9 lauryl ether (Laureth-9) and sodium glycocholate (SGC) was given to rats in a single intratracheal instillation (100 microliters/rat), and the lung was evaluated histopathologically. In the rats treated with Laureth-9, lung lesions were observed in the bronchi to alveoli. At 1 day after administration, edema, hemorrhage and inflammatory cell infiltration due to degeneration and desquamation of epithelium were observed. At 3 and 7 days after administration, the wound healing process resulting from the lung injury, such as hyperplasia of epithelium and sporadic fibrosis, was noted. SGC also induced lung lesions with a similar histopathological nature, whereas the lesions were mostly confined to the alveoli. These results suggest that surface active agents induce acute inflammation of the lung by intratracheal instillation, that the distribution of lesions is different among surface active agents, and moreover that pathological examination is indispensable for clarifying local toxicity of absorption enhancers in pulmonary drug-delivery studies.  (+info)

Purification and characterization of secretory phospholipase B, lysophospholipase and lysophospholipase/transacylase from a virulent strain of the pathogenic fungus Cryptococcus neoformans. (61/1530)

Infection caused by the fungus Cryptococcus neoformans is potentially fatal. A highly active extracellular phospholipase, demonstrating phospholipase B (PLB), lysophospholipase (LPL) and lysophospholipase/transacylase (LPTA) activities, was purified to homogeneity from C. neoformans using (NH(4))(2)SO(4) fractionation, and hydrophobic-interaction, anion-exchange and gel-filtration chromatography. All three enzyme activities co-purified as a single protein with an apparent molecular mass of 70-90 kDa by SDS/PAGE and 160-180 kDa by gel filtration. The ratio of the three activities remained constant after each purification step. The amino acid composition, as well as the sequences of the N-terminus and of five internal peptide fragments were novel. The protein was an acidic glycoprotein containing N-linked carbohydrate moieties, with pI values of 5.5 and 3.5. The apparent V(max) values for PLB and LPL activities were 12.3 and 870 micromol/min per mg of protein respectively; the corresponding K(m) values were approx. 185.3 and 92.2 microM. The enzyme was active only at acidic pH (pH optimum of 4.0 for PLB and 4.0-5.0 for LPL and LPTA). Enzyme activity did not require added cations, but was inhibited by Fe(3+). LPL and LPTA activities were decreased by 0.1% (v/v) Triton X-100 to 50% of the control value. Palmitoylcarnitine (0.5 mM) inhibited PLB (97% inhibition) and LPL and LPTA activities (35% inhibition) competitively. All phospholipids except phosphatidic acid were degraded by PLB, but dipalmitoyl phosphatidylcholine and dioleoyl phosphatidylcholine were the preferred substrates. This is the first complete description of the purification and properties of a phospholipase, which may be involved in virulence, from a pathogenic fungus.  (+info)

A novel 68-kDa adipocyte protein phosphorylated on tyrosine in response to insulin and osmotic shock. (62/1530)

Osmotic shock can cause insulin resistance in 3T3-L1 adipocytes by inhibiting insulin activation of glucose transport, p70S6 kinase, glycogen synthesis, and lipogenesis. By further investigating the relationship between insulin and hypertonic stress, we have discovered that osmotic shock enhanced by 10-fold the insulin-stimulated tyrosine phosphorylation of a 68-kDa protein. Phosphorylation by insulin was maximal after 1 min and was saturated with 50-100 nm insulin. The effect of sorbitol was completely reversible by 2.5 min. pp68 was a peripheral protein that was localized to the detergent insoluble fraction of the low density microsomes but was not associated with the cytoskeleton. Stimulation of the p42/44 and the p38 MAP kinase pathways by osmotic shock had no effect on pp68 phosphorylation. Treatment of adipocytes with the phosphotyrosine phosphatase inhibitor phenylarsine oxide also enhanced insulin-activated tyrosine phosphorylation of pp68 suggesting that osmotic shock may increase pp68 phosphorylation by inhibiting a phosphotyrosine phosphatase. Dissociation of pp68 from the low density microsomes with RNase A indicated that pp68 binds to RNA. Failure to immunoprecipitate pp68 using antibodies directed against known 60-70-kDa tyrosine-phosphorylated proteins suggest that pp68 may be a novel cellular target that lies downstream of the insulin receptor.  (+info)

Molecular cloning, expression, and functional analysis of a cis-prenyltransferase from Arabidopsis thaliana. Implications in rubber biosynthesis. (63/1530)

cis-Prenyltransferase catalyzes the sequential condensation of isopentenyl diphosphate with allylic diphosphate to synthesize polyprenyl diphosphates that play vital roles in cellular activity. Despite potential significance of cis-prenyltransferase in plant growth and development, no gene of the enzyme has been cloned from higher plants. Using sequence information of the conserved region of cis-prenyltransferase cloned recently from Escherichia coli, Micrococcus luteus, and yeast, we have isolated and characterized the first plant cis-prenyltransferase from Arabidopsis thaliana. Sequence analysis revealed that the protein is highly homologous in several conserved regions to cis-prenyltransferases from M. luteus, E. coli, and yeast. In vitro analyses using the recombinant protein overexpressed in E. coli revealed that the enzyme catalyzed the formation of polyprenyl diphosphates ranging in carbon number from 100 to 130 with a predominance of C(120). The enzyme exhibited a higher affinity for farnesyl diphosphate than for geranylgeranyl diphosphate, with the K(m) values being 0.13 and 3.62 micrometer, respectively, but a lower affinity for isopentenyl diphosphate, with a K(m) value of 23 micrometer. In vitro rubber biosynthesis analysis indicated that the Arabidopsis cis-prenyltransferase itself could not catalyze the formation of higher molecular weight polyprenyl diphosphates similar to natural rubber. A reverse transcriptase-polymerase chain reaction analysis showed that the gene was expressed at low levels in Arabidopsis plant, in which expression of the cis-prenyltransferase in leaf and root was higher than that in stem, flower, and silique. These results indicate the tissue-specific expression of cis-prenyltransferase and suggest a potential role and significance of the enzyme in the polyisoprenoid biosynthesis in plants.  (+info)

Exploration of the Drosophila acetylcholinesterase substrate activation site using a reversible inhibitor (Triton X-100) and mutated enzymes. (64/1530)

Cholinesterases are activated at low substrate concentration, and this is followed by inhibition as the level of substrate increases. However, one of these two components is sometimes lacking. In Drosophila acetylcholinesterase, the two phases are present, allowing both phenomena to be studied. Several kinetic schemes can explain this complex kinetic behavior. Among them, one model assumes that activation results from the binding of a substrate molecule to a non-productive site affecting the entrance of a substrate molecule into the active site. To test this hypothesis, we looked for an inhibitor competitive for activation and we found Triton X-100. Using organophosphates or carbamates as hemisubstrates, we showed that Triton X-100 inhibits or increases phosphorylation or carbamoylation of the enzyme. In vitro mutagenesis of the residues lining the active site gorge allowed us to locate the Triton X-100 binding site at the rim of the gorge with glutamate 107 playing the major role. These results led to the hypothesis that substrate binding at this site affects the entrance of another substrate molecule into the active site cleft.  (+info)