Fungal prophylaxis by reduction of fungal colonization by oral administration of bovine anti-Candida antibodies in bone marrow transplant recipients. (1/410)

Candida overgrowth and invasion constitute a serious threat with a high mortality in BMT recipients. Currently available topical antifungal prophylaxis is largely ineffective, and as resistance to existing, absorbable drugs for systemic use is rapidly developing, new forms of therapy are needed. We investigated the effect of oral treatment of BMT recipients with a bovine immunoglobulin product derived from animals immunized against several Candida species. The natural Candida colonization was first followed in 19 patients to establish the colonization pattern. Half of the patients were found to be colonized prior to transplantation and altogether 72% were colonized at some point during follow-up. Those with a high pre-transplant concentration of Candida in saliva (>100 CFU/ml) remained colonized throughout the BMT treatment period. The therapeutic effect was monitored in two other patient groups. The first group consisted of nine patients, where, due to a low number of primary colonized patients, response in colonized patients was suggestive of a therapeutic effect. In the second group, 10 patients with a high level of colonization (>100 CFU/ml) were given 10 g daily of the product in three divided doses. The results suggest a treatment-related reduction in Candida colonization in a majority (7/10) of patients and one patient became completely negative. As no adverse effects were noted, our findings encourage additional studies in immunocompromised, transplant patients.  (+info)

Comparison of in vitro activity of liposomal nystatin against Aspergillus species with those of nystatin, amphotericin B (AB) deoxycholate, AB colloidal dispersion, liposomal AB, AB lipid complex, and itraconazole. (2/410)

We compared the in vitro activity of liposomal nystatin (Nyotran) with those of other antifungal agents against 60 Aspergillus isolates. Twelve isolates were itraconazole resistant. For all isolates, geometric mean (GM) MICs (micrograms per milliliter) were 2.30 for liposomal nystatin, 0.58 for itraconazole, 0.86 for amphotericin B (AB) deoxycholate, 9.51 for nystatin, 2.07 for liposomal AB, 2.57 for AB lipid complex, and 0.86 for AB colloidal dispersion. Aspergillus terreus (GM, 8.72 micrograms/ml; range, 8 to 16 micrograms/ml) was significantly less susceptible to all of the polyene drugs than all other species (P = 0.0001).  (+info)

Species differences in the proportion of plasma lipoprotein lipid carried by high-density lipoproteins influence the distribution of free and liposomal nystatin in human, dog, and rat plasma. (3/410)

The objective of this study was an interspecies comparison of free nystatin (NYS) and liposomal NYS (Nyotran) distribution in plasma. NYS and liposomal NYS at concentrations of 5, 10, and 20 microg of NYS/ml were incubated in human, dog, and rat plasma for 5, 60, and 180 min at 37 degrees C. Following these incubations, plasma samples were separated into their high-density lipoprotein (HDL), triglyceride-rich lipoprotein, low-density lipoprotein, and lipoprotein-deficient plasma (LPDP) fractions by density-gradient ultracentrifugation, and each fraction was assayed for NYS by high-pressure liquid chromatography. Total plasma and lipoprotein cholesterol, triglyceride, and protein concentrations in each human, dog, or rat plasma sample were determined by enzymatic assays. When NYS and liposomal NYS were incubated in human, dog, or rat plasma, the majority of the NYS was recovered in the LPDP fraction. For the 5- and 60-min incubation times for all plasmas measured, a significantly greater percentage of NYS was recovered in the lipoprotein fraction (primarily HDL) following the incubation of liposomal NYS than following the incubation of NYS. There was a significant correlation between the lipoprotein lipid and protein profiles in human, dog, and rat plasmas and the distribution of NYS and liposomal NYS in plasma. In particular, differences in the proportion of plasma lipoprotein cholesterol, triglyceride, and apolar lipids (cholesteryl ester and triglycerides) carried by HDL influenced the distribution of NYS and liposomal NYS within plasmas of different species. These findings suggest that the distribution of NYS among plasma lipoproteins of different species is defined by the proportion of lipid carried by HDL, and this is possibly an important consideration when evaluating the pharmacokinetics, toxicities, and activities of these compounds following administration to different animal species.  (+info)

Liposomal nystatin against experimental pulmonary aspergillosis in persistently neutropenic rabbits: efficacy, safety and non-compartmental pharmacokinetics. (4/410)

The activity of liposomal nystatin against invasive pulmonary aspergillosis was investigated in persistently neutropenic rabbits. Treatment groups included liposomal nystatin at dosages of 1, 2 and 4 mg/kg/day intravenously, or amphotericin B deoxycholate 1 mg/kg/day administered intravenously after normal saline loading. As compared with untreated controls, liposomal nystatin administered at 2 and 4 mg/kg/day prolonged survival and reduced fungus-mediated tissue injury and excess lung weight at post-mortem in a similar manner to amphotericin B. Although amphotericin B was superior in clearing infected lung tissue, treatment with all regimens of liposomal nystatin led to a significant reduction in pulmonary fungal tissue burden. During treatment, ultrafast CT-scan demonstrated ongoing resolution of pulmonary lesions at 2 and 4 mg/kg/day, but not at 1 mg/kg/day. With the exception of mild increases in blood urea nitrogen (BUN) and serum creatinine values during treatment at 2 and 4 mg/kg/day, which were similar to those found in amphotericin B-treated rabbits, liposomal nystatin was well tolerated. Preliminary pharmacokinetic studies in non-infected animals established linear drug disposition of liposomal nystatin in plasma over the investigated dosage range and peak plasma levels above the MIC for the test strain after multiple daily dosing for 7 days. Liposomal nystatin increased survival and provided reduced tissue injury, effective microbiological clearance and tolerable side effects in experimental pulmonary aspergillosis in persistently neutropenic rabbits, thus providing a rational basis for further investigations in clinical trials.  (+info)

Nystatin effects on vacuolar function in Saccharomyces cerevisiae. (5/410)

The effects of nystatin, a polyene antibiotic, was studied in Saccharomyces cerevisiae by isolating and characterizing nystatin-sensitive mutants. We isolated a number of nystatin-sensitive mutants by ethylmethane sulfonate mutagenesis. One of these mutants, the nss1 mutant, was characterized in detail. The mutant was sensitive to stresses such as high temperature or high concentrations of monovalent and divalent cations. The nss1 mutants showed severe vacuolar protein sorting and vacuolar morphology defects. The nss1 mutant was demonstrated to have a mutational lesion in the known VPS16 gene, which is essential for vacuolar protein sorting in S. cerevisiae. All of the vacuolar deficient mutants (vps11, vps16, vps18, and vps33) were sensitive to nystatin. Nystatin was found to cause extensive enlargement of the vacuole in wild-type S. cerevisiae cells. These results are discussed with special reference to the vacuolar function of S. cerevisiae.  (+info)

Mechanical stretching of alveolar epithelial cells increases Na(+)-K(+)-ATPase activity. (6/410)

Alveolar epithelial cells effect edema clearance by transporting Na(+) and liquid out of the air spaces. Active Na(+) transport by the basolaterally located Na(+)-K(+)-ATPase is an important contributor to lung edema clearance. Because alveoli undergo cyclic stretch in vivo, we investigated the role of cyclic stretch in the regulation of Na(+)-K(+)-ATPase activity in alveolar epithelial cells. Using the Flexercell Strain Unit, we exposed a cell line of murine lung epithelial cells (MLE-12) to cyclic stretch (30 cycles/min). After 15 min of stretch (10% mean strain), there was no change in Na(+)-K(+)-ATPase activity, as assessed by (86)Rb(+) uptake. By 30 min and after 60 min, Na(+)-K(+)-ATPase activity was significantly increased. When cells were treated with amiloride to block amiloride-sensitive Na(+) entry into cells or when cells were treated with gadolinium to block stretch-activated, nonselective cation channels, there was no stimulation of Na(+)-K(+)-ATPase activity by cyclic stretch. Conversely, cells exposed to Nystatin, which increases Na(+) entry into cells, demonstrated increased Na(+)-K(+)-ATPase activity. The changes in Na(+)-K(+)-ATPase activity were paralleled by increased Na(+)-K(+)-ATPase protein in the basolateral membrane of MLE-12 cells. Thus, in MLE-12 cells, short-term cyclic stretch stimulates Na(+)-K(+)-ATPase activity, most likely by increasing intracellular Na(+) and by recruitment of Na(+)-K(+)-ATPase subunits from intracellular pools to the basolateral membrane.  (+info)

Safety and efficacy of multilamellar liposomal nystatin against disseminated candidiasis in persistently neutropenic rabbits. (7/410)

The activity of liposomal nystatin (L-Nys) against subacute disseminated candidiasis was investigated in persistently neutropenic rabbits. Antifungal therapy was administered for 10 days starting 24 h after intravenous inoculation of 10(3) blastoconidia of Candida albicans. Responses to treatment were assessed by the quantitative clearance of the organism from blood and tissues. Treatments consisted of L-Nys at dosages of 2 and 4 mg/kg of body weight/day (L-Nys2 and L-Nys4, respectively) amphotericin B deoxycholate at 1 mg/kg/day (D-AmB), and fluconazole at 10 mg/kg/day (Flu). All treatments were given intravenously once daily. Compared to the results for untreated but infected control animals, treatment with L-Nys2, L-Nys4, D-AmB, and Flu resulted in a significant clearance of the residual burden of C. albicans from the kidney, liver, spleen, lung, and brain (P < 0.0001 by analysis of variance). When the proportion of animals infected at at least one of the five tissue sites studied was evaluated, a dose-dependent response to treatment with L-Nys was found (P < 0.05). Compared to D-AmB-treated rabbits, mean serum creatinine and blood urea nitrogen levels at the end of therapy were significantly lower in animals treated with L-Nys2 (P < 0.001) and L-Nys4 (P < 0.001 and P < 0.01, respectively). L-Nys was less nephrotoxic than conventional amphotericin B and had dose-dependent activity comparable to that of amphotericin B for the early treatment of subacute disseminated candidiasis in persistently neutropenic rabbits.  (+info)

In-vitro antifungal activity of liposomal nystatin in comparison with nystatin, amphotericin B cholesteryl sulphate, liposomal amphotericin B, amphotericin B lipid complex, amphotericin B desoxycholate, fluconazole and itraconazole. (8/410)

The in-vitro susceptibilities of 120 clinical isolates of yeasts to liposomal nystatin were compared with those to amphotericin B lipid complex (ABLC), liposomal amphotericin B (LAB), amphotericin B cholesteryl sulphate (ABCD), amphotericin B desoxycholate, nystatin, fluconazole and itraconazole. Yeast isolates examined included strains of Candida albicans, Candida parapsilosis, Candida glabrata, Candida krusei, Candida guilliermondii, Candida tropicalis, Candida kefyr, Candida viswanathii, Candida famata, Candida rugosa, Rhodotorula rubra, Trichosporon spp., Cryptococcus laurentii and Cryptococcus neoformans. The mean MICs for all strains examined were: liposomal nystatin 0.96 mg/L; nystatin 0.54 mg/L; ABLC 0.65 mg/L; LAB 1.07 mg/L; ABCD 0.75 mg/L; amphotericin B 0.43 mg/L; fluconazole 5.53 mg/L; and itraconazole 0.33 mg/L. No significant differences were seen between the activity of liposomal nystatin and the polyene drugs or itraconazole, but liposomal nystatin was more active than fluconazole. MICs were lower than the reported blood concentrations following therapeutic doses of this drug, indicating the potential for a therapeutic use of liposomal nystatin in humans. These results indicate good activity in vitro against medically important yeasts, which compares favourably with the activities of other currently available antifungal drugs. Liposomal nystatin may have a role in the treatment of disseminated and systemic mycoses.  (+info)