Sympatric speciation by sexual conflict. (33/435)

It is well established that sexual conflict can drive an endless coevolutionary chase between the sexes potentially leading to genetic divergence of isolated populations and allopatric speciation. We present a simple mathematical model that shows that sexual conflict over mating rate can result in two other general regimes. First, rather than "running away" from males, females can diversify genetically into separate groups, effectively "trapping" the males in the middle at a state characterized by reduced mating success. Female diversification brings coevolutionary chase to the end. Second, under certain conditions, males respond to female diversification by diversifying themselves. This response results in the formation of reproductively isolated clusters of genotypes that emerge sympatrically.  (+info)

Left ventricular outflow tract mean systolic acceleration as a surrogate for the slope of the left ventricular end-systolic pressure-volume relationship. (34/435)

OBJECTIVE: The goal of this study was to analyze left ventricular outflow tract systolic acceleration (LVOT(Acc)) during alterations in left ventricular (LV) contractility and LV filling. BACKGROUND: Most indexes described to quantify LV systolic function, such as LV ejection fraction and cardiac output, are dependent on loading conditions. METHODS: In 18 sheep (4 normal, 6 with aortic regurgitation, and 8 with old myocardial infarction), blood flow velocities through the LVOT were recorded using conventional pulsed Doppler. The LVOT(Acc) was calculated as the aortic peak velocity divided by the time to peak flow; LVOT(Acc) was compared with LV maximal elastance (E(m)) acquired by conductance catheter under different loading conditions, including volume and pressure overload during an acute coronary occlusion (n = 10). In addition, a clinically validated lumped-parameter numerical model of the cardiovascular system was used to support our findings. RESULTS: Left ventricular E(m) and LVOT(Acc) decreased during ischemia (1.67 +/- 0.67 mm Hg.ml(-1) before vs. 0.93 +/- 0.41 mm Hg.ml(-1) during acute coronary occlusion [p < 0.05] and 7.9 +/- 3.1 m.s(-2) before vs. 4.4 +/- 1.0 m.s(-2) during coronary occlusion [p < 0.05], respectively). Left ventricular outflow tract systolic acceleration showed a strong linear correlation with LV E(m) (y = 3.84x + 1.87, r = 0.85, p < 0.001). Similar findings were obtained with the numerical modeling, which demonstrated a strong correlation between predicted and actual LV E(m) (predicted = 0.98 [actual] -0.01, r = 0.86). By analysis of variance, there was no statistically significant difference in LVOT(Acc) under different loading conditions. CONCLUSIONS: For a variety of hemodynamic conditions, LVOT(Acc) was linearly related to the LV contractility index LV E(m) and was independent of loading conditions. These findings were consistent with numerical modeling. Thus, this Doppler index may serve as a good noninvasive index of LV contractility.  (+info)

Multiple sequence alignment with arbitrary gap costs: computing an optimal solution using polyhedral combinatorics. (35/435)

Multiple sequence alignment is one of the dominant problems in computational molecular biology. Numerous scoring functions and methods have been proposed, most of which result in NP-hard problems. In this paper we propose for the first time a general formulation for multiple alignment with arbitrary gap-costs based on an integer linear program (ILP). In addition we describe a branch-and-cut algorithm to effectively solve the ILP to optimality. We evaluate the performances of our approach in terms of running time and quality of the alignments using the BAliBase database of reference alignments. The results show that our implementation ranks amongst the best programs developed so far.  (+info)

Complex numerical responses to top-down and bottom-up processes in vertebrate populations. (36/435)

Population growth rate is determined in all vertebrate populations by food supplies, and we postulate bottom-up control as the universal primary standard. But this primary control system can be overridden by three secondary controls: top-down processes from predators, social interactions within the species and disturbances. Different combinations of these processes affect population growth rates in different ways. Thus, some relationships between growth rate and density can be hyperbolic or even have multiple nodes. We illustrate some of these in marsupial, ungulate and rabbit populations. Complex interactions between food, predators, environmental disturbance and social behaviour produce the myriad observations of population growth in nature, and we need to develop generalizations to classify populations. Different animal groups differ in the combination of these four processes that affect them, in their growth rates and in their vulnerability to extinction. Because conservation and management of populations depend critically on what factors drive population growth, we need to develop universal generalizations that will relieve us from the need to study every single population before we can make recommendations for management.  (+info)

The numerical response: rate of increase and food limitation in herbivores and predators. (37/435)

Two types of numerical response function have evolved since Solomon first introduced the term to generalize features of Lotka-Volterra predator-prey models: (i) the demographic numerical response, which links change in consumer demographic rates to food availability; and (ii) the isocline numerical response, which links consumer abundance per se to food availability. These numerical responses are interchangeable because both recognize negative feedback loops between consumer and food abundance resulting in population regulation. We review how demographic and isocline numerical responses have been used to enhance our understanding of population regulation of kangaroos and possums, and argue that their utility may be increased by explicitly accounting for non-equilibrium dynamics (due to environmental variability and/or biological interactions) and the existence of multiple limiting factors. Interferential numerical response functions may help bridge three major historical dichotomies in population ecology (equilibrium versus non-equilibrium dynamics, extrinsic versus intrinsic regulation and demographic versus isocline numerical responses).  (+info)

DNA microarray data and contextual analysis of correlation graphs. (38/435)

BACKGROUND: DNA microarrays are used to produce large sets of expression measurements from which specific biological information is sought. Their analysis requires efficient and reliable algorithms for dimensional reduction, classification and annotation. RESULTS: We study networks of co-expressed genes obtained from DNA microarray experiments. The mathematical concept of curvature on graphs is used to group genes or samples into clusters to which relevant gene or sample annotations are automatically assigned. Application to publicly available yeast and human lymphoma data demonstrates the reliability of the method in spite of its simplicity, especially with respect to the small number of parameters involved. CONCLUSIONS: We provide a method for automatically determining relevant gene clusters among the many genes monitored with microarrays. The automatic annotations and the graphical interface improve the readability of the data. A C++ implementation, called Trixy, is available from http://tagc.univ-mrs.fr/bioinformatics/trixy.html.  (+info)

Application of a new method of nonlinear dynamical system identification to biochemical problems. (39/435)

The system identification method for a variety of nonlinear dynamic models is elaborated. The problem of identification of an original nonlinear model presented as a system of ordinary differential equations in the Cauchy explicit form with a polynomial right part reduces to the solution of the system of linear equations for the constants of the dynamical model. In other words, to construct an integral model of the complex system (phenomenon), it is enough to collect some data array characterizing the time-course of dynamical parameters of the system. Collection of such a data array has always been a problem. However difficulties emerging are, as a rule, not principal and may be overcome almost without exception. The potentialities of the method under discussion are demonstrated by the example of the test problem of multiparametric nonlinear oscillator identification. The identification method proposed may be applied to the study of different biological systems and in particular the enzyme kinetics of complex biochemical reactions.  (+info)

Frailty modeling for spatially correlated survival data, with application to infant mortality in Minnesota. (40/435)

The use of survival models involving a random effect or 'frailty' term is becoming more common. Usually the random effects are assumed to represent different clusters, and clusters are assumed to be independent. In this paper, we consider random effects corresponding to clusters that are spatially arranged, such as clinical sites or geographical regions. That is, we might suspect that random effects corresponding to strata in closer proximity to each other might also be similar in magnitude. Such spatial arrangement of the strata can be modeled in several ways, but we group these ways into two general settings: geostatistical approaches, where we use the exact geographic locations (e.g. latitude and longitude) of the strata, and lattice approaches, where we use only the positions of the strata relative to each other (e.g. which counties neighbor which others). We compare our approaches in the context of a dataset on infant mortality in Minnesota counties between 1992 and 1996. Our main substantive goal here is to explain the pattern of infant mortality using important covariates (sex, race, birth weight, age of mother, etc.) while accounting for possible (spatially correlated) differences in hazard among the counties. We use the GIS ArcView to map resulting fitted hazard rates, to help search for possible lingering spatial correlation. The DIC criterion (Spiegelhalter et al., Journal of the Royal Statistical Society, Series B 2002, to appear) is used to choose among various competing models. We investigate the quality of fit of our chosen model, and compare its results when used to investigate neonatal versus post-neonatal mortality. We also compare use of our time-to-event outcome survival model with the simpler dichotomous outcome logistic model. Finally, we summarize our findings and suggest directions for future research.  (+info)