Tol1, a fission yeast phosphomonoesterase, is an in vivo target of lithium, and its deletion leads to sulfite auxotrophy. (17/671)

Lithium is the drug of choice for the treatment of bipolar affective disorder. The identification of an in vivo target of lithium in fission yeast as a model organism may help in the understanding of lithium therapy. For this purpose, we have isolated genes whose overexpression improved cell growth under high LiCl concentrations. Overexpression of tol1(+), one of the isolated genes, increased the tolerance of wild-type yeast cells for LiCl but not for NaCl. tol1(+) encodes a member of the lithium-sensitive phosphomonoesterase protein family, and it exerts dual enzymatic activities, 3'(2'),5'-bisphosphate nucleotidase and inositol polyphosphate 1-phosphatase. tol1(+) gene-disrupted cells required high concentrations of sulfite in the medium for growth. Consistently, sulfite repressed the sulfate assimilation pathway in fission yeast. However, tol1(+) gene-disrupted cells could not fully recover from their growth defect and abnormal morphology even when the medium was supplemented with sulfite, suggesting the possible implication of inositol polyphosphate 1-phosphatase activity for cell growth and morphology. Given the remarkable functional conservation of the lithium-sensitive dual-specificity phosphomonoesterase between fission yeast and higher-eukaryotic cells during evolution, it may represent a likely in vivo target of lithium action across many species.  (+info)

Identification and purification of aminophospholipid flippases. (18/671)

Transbilayer phospholipid asymmetry is a common structural feature of most biological membranes. This organization of lipids is generated and maintained by a number of phospholipid transporters that vary in lipid specificity, energy requirements and direction of transport. These transporters can be divided into three classes: (1) bidirectional, non-energy dependent 'scramblases', and energy-dependent transporters that move lipids (2) toward ('flippases') or (3) away from ('floppases') the cytofacial surface of the membrane. One of the more elusive members of this family is the plasma membrane aminophospholipid flippase, which selectively transports phosphatidylserine from the external to the cytofacial monolayer of the plasma membrane. This review summarizes the characteristics of aminophospholipid flippase activity in intact cells and describes current strategies to identify and isolate this protein. The biochemical characteristics of candidate flippases are critically compared and their potential role in flippase activity is evaluated.  (+info)

Transcription elongation factor S-II confers yeast resistance to 6-azauracil by enhancing expression of the SSM1 gene. (19/671)

Loss of function of S-II makes yeast sensitive to 6-azauracil. Here, we identified a multi-copy suppressor gene of this phenotype, termed SSM1 (suppressor of 6-azauracil sensitivity of the S-II null mutant 1), that encodes a novel protein consisting of 280 amino acid residues. Although both the SSM1 null mutant and the S-II/SSM1 double null mutant were viable under normal growth conditions, they resembled the S-II null mutant in being sensitive to 6-azauracil. Expression of the SSM1 gene was found to be repressed in the S-II null mutant but was restored by overexpression of chimeric S-II molecules that were able to stimulate transcription elongation by RNA polymerase II in vitro. Furthermore, we identified two transcription arrest sites within the transcription unit of the SSM1 gene in vitro that could be relieved by S-II. These results indicate that S-II confers yeast resistance to 6-azauracil by stimulating transcription elongation of the SSM1 gene.  (+info)

Amino acid sequence of a nuclease (nuclease Le1) from Lentinus edodes. (20/671)

The fruit bodies of Lentinus edodes produce two acid nucleases, nucleases Le1 and Le3, both of which are thought to be candidates for the enzymes producing a tasty substance, 5'-GMP. To obtain the basic information on the mechanism of production of 5'-GMP, and structure-function relationship of these nucleases, the primary structure of nuclease Le1 was estimated by both protein chemistry and gene cloning. Nuclease Le1 is a glycoprotein and consists of 290 amino acid residues, and about 2 and 6 residues of hexosamine and neutral sugar, respectively. The nucleotide sequence of cDNA and genomic DNA encoding nuclease Le1 indicated the presence of 20 amino acid residues of a signal peptide. Nuclease Le1 has 115 and 108 residues of identical amino acid residues with nucleases P1 and S, respectively. The amino acid residues concerning the coordination with Zn2+ in nuclease P1 are all conserved in nuclease Le1. Nuclease Le1 contains 8 half-cystine residues and 4 of them are located at the same places as those of nucleases P1 and S.  (+info)

Uptake of adenosine 5'-monophosphate by Escherichia coli. (21/671)

Adenosine 5'-monophosphate is dephosphorylated before its uptake by cells of Escherichia coli. This is demonstrated by using a radioactive double-labeled culture, and with a 5'-nucleotidase-deficient, mutant strain. The adenosine formed is further phosphorolyzed to adenine as a prerequisite for its uptake and incorporation. The cellular localization of the enzymes involved in the catabolism of adenosine 5'-monophosphate is discussed.  (+info)

Evidence of active NADP(+) phosphatase in dormant seeds of Avena sativa L. (22/671)

Freshly-harvested seeds of Avena sativa L. do not germinate when imbibed at temperatures higher than 25 degrees C. This high temperature dormancy is due to the seed coats, and to the low activities of glycolysis and the oxidative pentose phosphate pathway (OPP) in the embryo. The analysis by exclusion chromatography of soluble NADP(+) phosphatase activities of embryos revealed two isoforms: a 37 kDa isoform present in both dormant and after-ripened caryopses, and a second isoform, with an apparent molecular weight of 160 kDa, five times more active in embryos of dormant seeds than in the after-ripened ones, after 6 h of imbibition at 30 degrees C. Moreover, the activity of this 160 kDa isoform was three times less in embryos from dormant caryopses when they were grown at 10 degrees C, a permissive temperature for radicle protrusion. These results suggest a correlation between the activity of the 160 kDa NADP(+) phosphatase and the dormancy state of the caryopsis. The two isoforms differed in the pH required for optimal activity: pH 5.7 and 6.5 for the 37 kDa and the 160 kDa phosphatases, respectively. Furthermore, the 160 kDa NADP(+) phosphatase displayed a strong specificity for NADP(+), whereas the 37 kDa isoform was able to hydrolyse numerous other phosphorylated compounds.  (+info)

Molecular characterization of a hyperinducible, surface membrane-anchored, class I nuclease of a trypanosomatid parasite. (23/671)

The 3'-nucleotidase/nuclease (3'-NT/NU) is a surface enzyme unique to trypanosomatid parasites. These organisms lack the pathway for de novo purine biosynthesis and thus are entirely dependent upon their hosts to supply this nutrient for their survival, growth, and multiplication. The 3'-NT/NU is involved in the salvage of preformed purines via the hydrolysis of either 3'-nucleotides or nucleic acids. In Crithidia luciliae, this enzyme is highly inducible. For example, in these organisms purine starvation triggers an approximately 1000-fold up-expression of 3'-NT/NU activity. In the present study, we cloned and characterized a gene encoding this intriguing enzyme from C. luciliae (Cl). Sequence analysis showed that the Cl 3'-NT/NU deduced protein possessed five regions, which we defined here as being characteristic of members of the class I nuclease family. Further, we demonstrated that the Cl 3'-NT/NU-expressed protein possessed both 3'-nucleotidase and nuclease activities. Moreover, we showed that the dramatic up-expression of 3'-NT/NU activity in response to purine starvation of C. luciliae was concomitant with the approximately 100-fold elevation in steady-state mRNA specific for this gene. Finally, results of our nuclear run-on analyses demonstrated that such up-regulation in 3'-NT/NU enzyme activity was mediated at the posttranscriptional level.  (+info)

Identification of osteoblast/osteocyte factor 45 (OF45), a bone-specific cDNA encoding an RGD-containing protein that is highly expressed in osteoblasts and osteocytes. (24/671)

We describe the cloning and characterization of a novel bone-specific cDNA predicted to encode an extracellular matrix protein. This cDNA was identified by subtractive hybridization based upon its high expression in bone marrow-derived osteoblasts. By Northern blot analysis, we detected a single 2-kilobase mRNA transcript in bone, whereas no expression was detected in other tissues. Immunohistochemistry revealed that the protein was expressed highly in osteocytes within trabecular and cortical bone. RNA and protein expression analysis using in vivo marrow ablation as a model of bone remodeling demonstrated that this gene was expressed only in cells that were embedded within bone matrix in contrast to the earlier expression of known osteoblast markers. The cDNA was predicted to encode a serine/glycine-rich secreted peptide containing numerous potential phosphorylation sites and one RGD sequence motif. The interaction of RGD domain-containing peptides with integrins has been shown previously to regulate bone remodeling by promoting recruitment, attachment, and differentiation of osteoblasts and osteoclasts. Secretion of this RGD-containing protein from osteocytes has the potential to regulate cellular activities within the bone environment and thereby may impact bone homeostasis. We propose the name OF45 (osteoblast/osteocyte factor of 45 kDa) for this novel cDNA.  (+info)