Mn2+-dependent ADP-ribose/CDP-alcohol pyrophosphatase: a novel metallophosphoesterase family preferentially expressed in rodent immune cells. (65/397)

 (+info)

Covalent modification of proteins by metabolites of NAD+. (66/397)

Covalently bound adducts of ply(L-lysine), bovine serum albumin, lysine rich histone (f1) and deoxyribonucleotidase I (DNase, EC 3.1.4.5) with adenosine diphosphoribose and ribose-5-phosphate were prepared at pH 7.4 and 9.5. Macromolecular adducts of bovine serum albumin and histone (f1) were isolated by gel filtration and electrophoresis. Reduction of products by NaBH4 did not dissociate the ribose-5-phosphate moiety from macromolecules. Specific introduction of 3H into the adducts also indicated Schiff base formation. The reaction of ribose-5-phosphate with epsilon-amino groups of histone (f1) approached 70-90% saturation. Spermine and spermidine also react with adenosine diphosphoribose and ribose-5-phosphate to form 1:1 Schiff bases. It is proposed that high turnover of cellular NAD+ is the source of aldehydic metabolites which may regulate macromolecular metabolism by covalent modification of nuclear proteins, whereas polyamines serve as modulators of this control cycle.  (+info)

Use of CDP-glycerol as an alternate acceptor for the teichoic acid polymerase reveals that membrane association regulates polymer length. (67/397)

 (+info)

Improved synthesis of nucleoside diphosphate glycopyranoses. (68/397)

 (+info)

New efficient synthesis of nucleoside diphosphate glycopyranoses. (69/397)

 (+info)

Functional characterization and substrate specificity of spinosyn rhamnosyltransferase by in vitro reconstitution of spinosyn biosynthetic enzymes. (70/397)

 (+info)

Adenosine diphosphate ribosylated histones. (71/397)

When rat liver nuclei were incubated with [adenine-3H]NAD, besides histone 1, histone 2A and especially histone 2B accepted 3H radioactivity. 3H radioactivity was also found on the non-histone proteins and on the small amounts of histones 1 and 3 released into the supernatant during incubation. [14C]Adenine uptake in vivo by liver and thymus nuclei showed radioactivity in histones 1 and 3. After digestion with Pronase and leucine aminopeptidase 14C- or 32P-labelled histone 3 released a serine phosphate-containing nucleotide, which on acid hydrolysis yielded ADP-ribose and serine phosphate. Serine phosphate was also found in the material from the nucleotide peaks from histones 2A and 2B. ADP-ribosylated histones 1 and 3 were more easily released from nuclei than their unmodified forms and showed higher [32P]Pi and [3H]lysine uptakes in vivo [Ord & Stocken (1975) FEBS Meet. Proc. 34, 113-125].  (+info)

Changes in enzymic activities of nucleoside diphosphate sugar interconversions during differentiation of cambium to xylem in sycamore and poplar. (72/397)

During the transition from primary wall formation to secondary thickening there is a marked shift in the synthesis of pectin, hemicellulose and cellulose. The activities of the enzymes [UDP-D-galactose 4-epimerase (EC 5.1.3.2)8 UDP-l-arabinose 4-epimerase (EC 5.1.3.5), UDP-D-glucose dehydrogenase (EC 1.1.1.22) and UDP-D--glucuronate decarboxylase (EC 4.1.1.35)] were measured in cambial cells, differentiating xylem cells and differentiated xylem cells isolated from sycamore and poplar trees, and phloem cells from poplar. At the final stage of the differentiation of cambium to xylem there was a decrease in activity of the enzymes directly involved in producing the soluble precursors of pectin (DUP-D-galactose 4-epimerase and UDP-L-arabinose 4-epimerase and an increase in those producing the precursors of hemicellulose (UDP-D-glucose dehydrogenase and UDP-D-glucuronate decarboxylase). These results strongly suggest ahat the changes were correlated with the differences observed in the chemical composition of the wall during development. The changes found in the catalytic activity of the enzymes of nucleoside diphosphate sugar interconversion exert a coarse control over the synthesis of pectin and hemicelluloses. The tissues at all stages of development contained the necessary enzyme activities to produce all the precursors of pectin and hemicellulose, even at the final stage of differentiation when no pectin was formed.  (+info)