Osteoclasts expressing the measles virus nucleocapsid gene display a pagetic phenotype. (49/841)

Osteoclasts (OCLs) in Paget's disease are markedly increased in number and size, have increased numbers of nuclei per multinucleated cell, and demonstrate increased resorption capacity and increased sensitivity to 1,25-(OH)(2)D(3), the active form of vitamin D. These cells also contain nuclear inclusions, reminiscent of those seen in paramyxovirus-infected cells, which cross-react with antibodies to measles virus nucleocapsid (MVNP) antigen. To elucidate the role of MV in the abnormal OCL phenotype of Paget's disease, we transduced normal OCL precursors with retroviral vectors expressing MVNP and the MV matrix (MVM) genes. The transduced cells were then cultured with 1,25-(OH)(2)D(3) for14 or 21 days to induce formation of OCL-like multinucleated cells. The MVNP-transduced cells formed increased numbers of multinucleated cells, which contained many more nuclei and had increased resorption capacity compared with multinucleated cells derived from empty vector-transduced (EV-transduced) and MVM-transduced or normal bone marrow cells. Furthermore, MVNP-transduced cells showed increased sensitivity to 1, 25-(OH)(2)D(3), and formed OCLs at concentrations of 1, 25-(OH)(2)D(3) that were 1 log lower than that required for normal, EV-transduced, or MVM-transduced cells. These results demonstrate that expression of the MVNP gene in normal OCL precursors stimulates OCL formation and induces OCLs that express a phenotype similar to that of pagetic OCLs. These results support a potential pathophysiologic role for MV infection in the abnormal OCL activity and morphology that are characteristic of pagetic OCLs.  (+info)

Role of CD40 ligand and CD28 in induction and maintenance of antiviral CD8+ effector T cell responses. (50/841)

The primary aim of this report was to evaluate the immune responses of CD40 ligand-deficient (CD40L-/-) mice infected with two viruses known to differ markedly in their capacity to replicate in the host. Lymphocytic choriomeningitis virus (LCMV) is a natural mouse pathogen that replicates widely and extensively, whereas vesicular stomatitis virus (VSV) spreads poorly. We found that the primary response of CD40L-/- mice toward VSV is significantly impaired; proliferation of both CD4+ and CD8+ cells is reduced 2- to 3-fold, few CD8+ cells acquire an activated phenotype, and little functional activity is induced. Very similar results were obtained in VSV-infected, CD28-deficient mice. In contrast, neither CD40L nor CD28 was required for induction of a primary CD8+ response toward LCMV. Surprisingly, lack of CD4+ T cells had no impact on the primary immune response toward any of the viruses, even though the CD40 ligand dependence demonstrated for VSV would be expected to be associated with CD4 dependence. Upon coinfection of VSV-infected mice with LCMV, the requirement for CD40 ligand (but not CD28) could be partially bypassed, as evidenced by a 3-fold increase in the frequency of VSV-specific CD8+ T cells on day 6 postinfection. Finally, despite the fact that the primary LCMV-specific CD8+ response is virtually unimpaired in CD40L-/- mice, their capacity to maintain CD8+ effector activity and to permanently control the infection is significantly reduced. Thus, our results demonstrate that the importance of CD40/CD40L interaction for activation of CD8+ T cells varies between viruses and over time.  (+info)

NP and L proteins of lymphocytic choriomeningitis virus (LCMV) are sufficient for efficient transcription and replication of LCMV genomic RNA analogs. (51/841)

The genome of lymphocytic choriomeningitis virus (LCMV) consists of two negative-sense single-stranded RNA segments, designated L and S. Both segments contain two viral genes in an ambisense coding strategy, with the genes being separated by an intergenic region (IGR). We have developed a reverse genetic system that allows the investigation of cis-acting signals and trans-acting factors involved in transcription and replication of LCMV. To this end, we constructed an LCMV S minigenome consisting of a negative-sense copy of the chloramphenicol acetyltransferase (CAT) reporter gene flanked upstream by the S 5' untranslated region (UTR) and IGR and downstream by the S 3' UTR. CAT expression was detected in LCMV-infected cells transfected with the minigenome RNA. Intracellular coexpression of the LCMV minigenome and LCMV L and NP proteins supplied from cotransfected plasmids driven by the T7 RNA polymerase provided by the recombinant vaccinia virus vTF7-3 resulted in high levels of CAT activity and synthesis of subgenomic CAT mRNA and antiminigenome RNA species. Thus, L and NP represent the minimal viral trans-acting factors required for efficient RNA synthesis mediated by LCMV polymerase.  (+info)

The effect of mutations in the HIV-1 nucleocapsid protein on strand transfer in cell-free reverse transcription reactions. (52/841)

Interactions between the nucleocapsid protein (NC) and reverse transcriptase of HIV-1 have been shown to promote the initiation of reverse transcription. We assayed the effect of NC on later events, using a strand transfer system with donor and acceptor HIV RNA templates and found that the presence of NC resulted in increased synthesis of full-length strand-transferred (FLST) DNA. This effect also occurred with mutated forms of NC that lacked both zinc fingers, or that contained a point mutation (histidine-->cysteine) at amino acid 23. In contrast, NC-derived proteins containing only the proximal or distal zinc fingers, or lacking the N- and C-termini, were all unable to catalyze the synthesis of FLST DNA. Band-shift assays using both the mutated and wild-type forms of these proteins revealed that all the NC proteins promoted strand association between (-) strong-stop DNA [(-)ssDNA] and acceptor RNA. The zinc finger motifs were dispensable for full-length processive reverse transcription, and the N- and C-termini were required; however, all NC domains were dispensable for association of (-)ssDNA and acceptor RNA. This suggests that annealing is a less stringent reaction than DNA polymerization.  (+info)

NMR analysis of intra- and inter-molecular stems in the dimerization initiation site of the HIV-1 genome. (53/841)

Two positive-strand HIV-1 genomic RNAs form a dimer in virion particles through interaction of the dimerization initiation sites (DIS). The DIS RNA fragment spontaneously formed a "loose-dimer" and was converted into a "tight-dimer" by supplementation with nucleocapsid protein NCp7. This two-step dimerization reaction requires the whole DIS sequence [Takahashi et al. (2000) RNA 6, 96-102]. In the present study, we measured imino proton resonances to investigate the secondary structures of the two types of dimers in a 39-mer RNA covering the entire DIS (DIS39), including discrimination between intra- and inter-molecular base pairing. Both the presence and absence of inter-molecular NOE between (15)N-labeled and unlabeled DIS39 were unambiguously detected in an equimolar mixture of (15)N-labeled and unlabeled DIS39. The stem-bulge-stem structures in both dimers were confirmed and found to be very close to each other from clear superimposition of the NMR spectra in the two dimeric states. Nevertheless, the modes of base pairing in the stems of the loose- and tight-dimers were intra- and inter-molecular, respectively. Our results suggest a large structural alteration of genomic RNA occurs during virion maturation.  (+info)

Nucleic acid binding properties of the simian immunodeficiency virus nucleocapsid protein NCp8. (54/841)

The nucleocapsid protein of simian immunodeficiency virus (SIV) NCp8 has two copies of conserved sequences (termed zinc fingers, ZF) of 14 amino acids with 4 invariant residues (CCHC) that coordinate Zn(II). Each of its two ZFs has a Trp residue. A significant quenching of NCp8 Trp fluorescence was seen in nucleic acid complexes, suggesting stacking of the indole ring with nucleobases and the simultaneous involvement of both ZFs in the binding process. Both ZFs contribute to the nucleic acid binding free energy of NCp8, albeit in a not additive manner. NCp8 exhibited a base preference analogous to that of NCp7: G approximately I > T > U > C > A. Alternating base sequences that bind HIV-1 NCp7 in a sequence-specific manner were also bound selectively by NCp8. Specific sequence recognition required at least five bases and the presence of bound Zn(II). The two ZFs account for the net displacement of 3 out of 4 sodium ions upon binding (2 by the first and one by the second finger), and for most (85%) of the hydrophobic stabilization in complex formation. Based on the sequence and functional similarity of SIV NCp8 and HIV-1 NCp7, and using available structural information for free and oligonucleotide bound NCp7, we propose a structural model for NCp8-oligonucleotide complexes.  (+info)

The viral nucleocapsid protein of transmissible gastroenteritis coronavirus (TGEV) is cleaved by caspase-6 and -7 during TGEV-induced apoptosis. (55/841)

The transmissible gastroenteritis coronavirus (TGEV), like many other viruses, exerts much of its cytopathic effect through the induction of apoptosis of its host cell. Apoptosis is coordinated by a family of cysteine proteases, called caspases, that are activated during apoptosis and participate in dismantling the cell by cleaving key structural and regulatory proteins. We have explored the caspase activation events that are initiated upon infection of the human rectal tumor cell line HRT18 with TGEV. We show that TGEV infection results in the activation of caspase-3, -6, -7, -8, and -9 and cleavage of the caspase substrates eIF4GI, gelsolin, and alpha-fodrin. Surprisingly, the TGEV nucleoprotein (N) underwent proteolysis in parallel with the activation of caspases within the host cell. Cleavage of the N protein was inhibited by cell-permeative caspase inhibitors, suggesting that this viral structural protein is a target for host cell caspases. We show that the TGEV nucleoprotein is a substrate for both caspase-6 and -7, and using site-directed mutagenesis, we have mapped the cleavage site to VVPD(359) downward arrow. These data demonstrate that viral proteins can be targeted for destruction by the host cell death machinery.  (+info)

Rescue of multiple viral functions by a second-site suppressor of a human immunodeficiency virus type 1 nucleocapsid mutation. (56/841)

Human immunodeficiency type 1 (HIV-1) bearing the nucleocapsid (NC) mutation R10A/K11A is replication defective. After serial passage of the mutant virus in tissue culture, we isolated a revertant that retained the original mutation. It had acquired, in addition, a new mutation (E21K) that was formally demonstrated to be sufficient for restoration of viral replication. Detailed analysis of the replication defect of R10A/K11A revealed a threefold reduction in virion yield and a fivefold reduction in packaging of viral genomic RNA. Real-time PCR was then used to quantitate viral DNA synthesis following infection of Jurkat T cells. After adjustment for the assembly and packaging defects, a minor (twofold) reduction in synthesis of either strong-stop, full-length linear DNA or 2-LTR circles was observed with R10A/K11A virions, indicating that reverse transcription and nuclear transport of the viral genome were largely intact. However, after adjustment for the amounts of full-length or 2-LTR circles produced, R10A/K11A virions were at least 10-fold less infectious than wild type, indicating that viral DNA produced by the R10A/K11A mutant failed to integrate. Each of the above-mentioned defects was corrected by introduction of the second-site compensatory mutation E21K. These results demonstrate that the replication defect of mutant R10A/K11A can be explained by impairment at multiple steps in the viral life cycle, most important among them being integration and RNA packaging. The E21K mutation is predicted to restore positive charge to the face of the R10A/K11A mutant NC protein that interacts with the HIV-1 SL3 RNA stem-loop, emphasizing the importance of NC basic residues for HIV-1 replication.  (+info)