DNA hybridization on microparticles: determining capture-probe density and equilibrium dissociation constants. (9/2743)

Many DNA-probe assays utilize oligonucleotide-coated microparticles for capture of complementary nucleic acids from solution. During development of these assays, as well as in other particle-based nucleic acid applications, it is useful to know both the amount of duplex formation expected under various experimental conditions and the coating density of the capture oligonucleotide on the particle surface. We examined the simplest form of a DNA-probe microparticle assay: hybridization of a particle-bound capture oligonucleotide to its solution-phase complement. Fluorescein-labeled solution-phase oligonucleotide was hybridized to varying amounts of particles, and the amount of labeled oligonucleotide remaining in solution at equilibrium was measured. We present a simple two-state, all-or-none model for bimolecular hybridization of non-self-complementary sequences that can be used to calculate the equilibrium dissociation constant ( Kd ) from hybridization data. With experimental conditions where both the Kd value and the concentration of capture probe in the reaction are small relative to the concentration of labeled complementary oligonucleotide in the reaction, density of the capture probe on the particle's surface can also be determined. Kd values for particle-based hybridization were different from those obtained from solution-phase thermodynamic parameters. At higher temperatures, hybridization on particles was more efficient than hybridization in solution.  (+info)

An engineered class I transfer RNA with a class II tertiary fold. (10/2743)

Structure-based engineering of the tertiary fold of Escherichia coli tRNA(Gln)2 has enabled conversion of this transfer RNA to a class II structure while retaining recognition properties of a class I glutamine tRNA. The new tRNA possesses the 20-nt variable stem-loop of Thermus thermophilus tRNA(Ser). Enlargement of the D-loop appears essential to maintaining a stable tertiary structure in this species, while rearrangement of a base triple in the augmented D-stem is critical for efficient glutaminylation. These data provide new insight into structural determinants distinguishing the class I and class II tRNA folds, and demonstrate a marked sensitivity of glutaminyl-tRNA synthetase to alteration of tRNA tertiary structure.  (+info)

Single-pair fluorescence resonance energy transfer on freely diffusing molecules: observation of Forster distance dependence and subpopulations. (11/2743)

Photon bursts from single diffusing donor-acceptor labeled macromolecules were used to measure intramolecular distances and identify subpopulations of freely diffusing macromolecules in a heterogeneous ensemble. By using DNA as a rigid spacer, a series of constructs with varying intramolecular donor-acceptor spacings were used to measure the mean and distribution width of fluorescence resonance energy transfer (FRET) efficiencies as a function of distance. The mean single-pair FRET efficiencies qualitatively follow the distance dependence predicted by Forster theory. Possible contributions to the widths of the FRET efficiency distributions are discussed, and potential applications in the study of biopolymer conformational dynamics are suggested. The ability to measure intramolecular (and intermolecular) distances for single molecules implies the ability to distinguish and monitor subpopulations of molecules in a mixture with different distances or conformational states. This is demonstrated by monitoring substrate and product subpopulations before and after a restriction endonuclease cleavage reaction. Distance measurements at single-molecule resolution also should facilitate the study of complex reactions such as biopolymer folding. To this end, the denaturation of a DNA hairpin was examined by using single-pair FRET.  (+info)

A novel endonuclease of human cells specific for single-stranded DNA. (12/2743)

We have fractionated from human aneuploid cell cultures three different enzyme fractions degrading single-stranded DNA. We have purified and characterized one of these DNases; this is an endonuclease working at alkaline pH (around 9.5) and requiring Mg2+ for its activity. The enzyme degrades denatured DNA over 100 times more efficiently than native DNA in optimal conditions. The termini produced by the enzyme have 5'P and 3'OH ends. The enzyme can attack, though at reduced rate, the supertwisted circular molecule of Simian virus 40 DNA, whereas it is inactive on the nicked circular molecule. The ultraviolet irradiation of DNA, whether native or denatured, does not affect its efficiency as substrate of the DNase. The properties of this endonuclease distinguish it from those of the other DNases described previously in mammalian cells; the denomination DNase VI is therefore proposed. Its properties are similar to those of DNases described in Ustilago maydis and Bacillus subtilis, for which an essential role in recombination seems likely.  (+info)

Cleavage of a 23S rRNA pseudoknot by phenanthroline-Cu(II). (13/2743)

Studying the intricate folding of rRNA within the ribosome remains a complex problem. Phenanthroline-Cu(II) complexes cleave phosphodiester bonds in rRNA in specific regions, apparently especially where the rRNA structure is constrained in some fashion. We have introduced phenanthroline-copper complexes into 50S Escherichia coli ribosomal subunits and shown specific cleavages in the regions containing nucleotides 60-66 and 87-100. This specificity of cleavage is reduced when the ribosome is heated to 80 degrees C and reduced to background when the ribosomal proteins are extracted and the cleavage repeated on protein-free 23S rRNA. It has been suggested that nucleotides 60-66 and 87-95 in E.coli 23S rRNA are involved in a putative pseudoknot structure, which is supported by covariance data. The paired cleavages of nearly equal intensity of these two regions, when in the ribosome, may further support the existence of a pseudoknot structure in the 100 region of 23S rRNA.  (+info)

Characterization of imidazole as a DNA denaturant by using TGGE of PCR products from a random pool of DNA. (14/2743)

Perpendicular temperature gradient gel electrophoresis (TGGE) profiles were analyzed for PCR products from a random pool of DNA [60 nts random region flanked by two primer (20 nts) sites]. Besides a normal transition profile of a homoduplex, unique mobility transition profiles of two kinds of heteroduplex with a big internal loop were observed, representing the successive helix-coil transitions of the DNAs. As the appearance of the heteroduplex band is an estimator of the complexity of a random pool, it will be applicable to monitor the extent of the selection process in the in vitro selection method. When imidazole was added to the electrophoretic buffer, the transition pattern shifted to the low temperature side. At a concentration of 1 M, imidazole lowered the melting temperature (Tm) of DNA by 13+/-2 degrees C for all the three chain separation transitions observed. Thus imidazole is a stronger denaturant than urea, at least at dilute concentration. Dependence of Tm on concentration of imidazole and the mobility change suggested that imidazole binds to nucleotide in the single-stranded state.  (+info)

A potent polyamine analog, spermindiol. (15/2743)

The effects of spermine, putrescine, and spermindiol on different nucleases were investigated. A highly active spermine analog, spermindiol, was synthesized, which markedly enhanced DNA hydrolysis by staphylococcal nuclease and spleen DNase II [EC 3.1.4.6] and RNA degradation by staphylococcal nuclease and pancreatic RNase A [EC 3.1.4.22]. Spermindiol also increased the melting temperature of calf thymus DNA.  (+info)

Homogenization-resistant and -susceptible components of tobacco mosaic virus replicative form RNA. (16/2743)

When prepared from tissue frozen with liquid nitrogen, tobacco mosaic virus replicative form RNA (TMV RF) was uniform in size but when prepared by high-speed homogenization, or when TMV RF prepared with liquid nitrogen was homogenized, 80 to 90% of the RF broke into relatively discrete pieces. The unbroken RF was not fragmented by additional homogenization. The TMV RF components susceptible and resistant to breakage, respectively, were synthesized with similar kinetics in relation to length of labelling period, but the slightly more resistant component was synthesized during the early infection period. Both components were produced by different strains of TMV but leaves infected with cowpea chlorotic mottle or southern bean mosaic viruses yielded only RF resistant to breakage. TMV replicative intermediate RNA was also broken by homogenization. The occurrence of the two RF components may be of significance in the replication of RNA viruses.  (+info)