Establishment of a porcine cell line from in vitro-produced blastocysts and transfer of the cells into enucleated oocytes. (25/733)

The present study was conducted to establish a porcine cell line from blastocysts produced in vitro and to examine the developmental ability of nuclear transfer embryos reconstituted with the cells and enucleated mature oocytes. When hatched blastocysts were cultured in Dulbecco's modified Eagle's medium with supplements, no colonies of embryo-derived cells were observed. In contrast, 56% of embryos that were attached to feeder layers of STO cells formed colonies in NCSU-23 with supplements. When the colonies were subcultured in the absence of feeder cells, a cell line with an epithelial-like cell morphology was obtained. This cell morphology was stable up to at least passage 30. Although no fused embryos were observed when a pulse of 100 V/mm was applied, the fusion rate increased significantly at 150 V/mm (28%) and 200 V/mm (64%). At 200 V/mm, 39% of fused embryos cleaved, but no embryos developed beyond the 3-cell stage. When cocultured with electro-activated oocytes, percentages of reconstructed embryos cleaved (65%) and developed to the 4-cell stage (23%) were significantly higher than percentages for those (cleavage: 38%; 4-cell stage: 3%) in the absence of activated oocytes. At 7 days after culture, one reconstructed embryo successfully developed to the blastocyst stage in the presence of activated oocytes. When green fluorescent protein-expressing cells and enucleated oocytes were fused and the fused embryos were cultured with electro-activated oocytes, 3 of 102 reconstructed embryos developed to the blastocyst stage. All of the blastocysts were positive for fluorescent green under ultraviolet light. The results of the present study indicate that a porcine cell line can be established from the hatched blastocyst and maintained in vitro for a long period, and that reconstructed embryos obtained by transferring the blastocyst-derived cells into enucleated oocytes have the ability to develop to the blastocyst stage in vitro.  (+info)

Cytoplasm mediates both development and oxidation-induced apoptotic cell death in mouse zygotes. (26/733)

Eggs must be the major locus of reproductive aging in women, because donation of eggs from younger to middle-aged women abrogates the effects of age on fertility. Oxidative stress, mitochondrial dysfunction, and apoptosis are associated with senescence. To develop an animal model of egg senescence, we treated mouse zygotes with 175 microM H(2)O(2) that induced mitochondrial dysfunction and developmental arrest, followed by delayed cell death, consistent with apoptosis. We reconstructed zygotes with nuclei and cytoplasm from treated or untreated zygotes, then followed development and apoptotic cell death in the reconstituted embryos. Pronuclear exchange between untreated, normal zygotes served as nuclear transfer controls. Rates of cleavage and development to morula and blastocysts were significantly lower (P<0.01) in zygotes reconstituted from untreated pronuclei and H(2)O(2)-stressed cytoplasts than those of nuclear transfer controls. Instead, the arrested, reconstituted zygotes displayed TUNEL staining at a similar rate to that of H(2)O(2)-treated controls, suggesting that apoptotic potential could be transferred cytoplasmically. On the other hand, rates of cleavage and development to morula and blastocyst of the reconstituted zygotes, derived from stressed pronuclei and untreated cytoplasm, were significantly increased (P<0.05), compared to those of H(2)O(2)-treated, control zygotes, indicating that healthy cytoplasm could partly rescue pronuclei from oxidative stress. Although oxidation stressed both nuclei and cytoplasm, cytoplasm was more sensitive than nuclei to oxidative stress. It is suggested that cytoplasm, most likely mitochondria, plays a central role in mediating both development and apoptotic cell death induced by oxidative stress in mouse zygotes.  (+info)

High developmental rates of vitrified bovine oocytes following parthenogenetic activation, in vitro fertilization, and somatic cell nuclear transfer. (27/733)

Successful cryopreservation of mammalian oocytes would provide a steady source of materials for nuclear transfer and in vitro embryo production. Our goal was to develop an effective vitrification protocol to cryopreserve bovine oocytes for research and practice of parthenogenetic activation, in vitro fertilization, and nuclear transfer. Bovine oocytes matured in vitro were placed in 4% ethylene glycol (EG) in TCM 199 plus 20% fetal bovine serum (FBS) at 39 degrees C for 12-15 min, and then transferred to a vitrification solution (35% EG, 5% polyvinyl-pyrrolidone, 0.4 M trehalose in TCM 199 and 20% FBS). Oocytes were vitrified in microdrops on a precooled (-150 degrees C) metal surface (solid-surface vitrification). The vitrified microdrops were stored in liquid nitrogen and were either immediately thawed or were thawed after storage for 2-3 wk. Surviving oocytes were subjected to 1) parthenogenetic activation, 2) in vitro fertilization, or 3) nuclear transfer with cultured adult fibroblast cells. Treated oocytes were cultured in KSOM containing BSA or FBS for 9 to 10 days. Embryo development rates were recorded daily and morphologically high-quality blastocysts were cryopreserved for nuclear transfer-derived embryos at Day 7 or Day 8 of culture. Immediate survival of vitrified/thawed oocytes varied between 77% and 86%. Cleavage and blastocyst development rates of vitrified oocytes following in vitro fertilization or activation were lower than those of the controls. For nuclear transfer, however, vitrified oocytes supported embryonic development as equally well as fresh oocytes.  (+info)

Ongoing research on mammalian cloning and embryo stem cell technologies: bioethics of their potential medical applications. (28/733)

Reproduction by cloning has been achieved by transfer into enucleated oocytes of nuclei from embryonic cells and more recently from cells of adult animals. The efficiency at which embryos produced by such nuclear transfers will develop into healthy newborns is very low but has succeeded in producing some cloned bovines, ovines and mice. Since the first report of sheep cloning from an adult cell in 1997, the potential applications of reproductive cloning in human medicine have been envisaged amidst a flurry of moral debates. Although the technology is still far from being ready for any human use, it has been condemned up front. It has also led to irrational fantasies and fears, based mainly on the misconception that genetic identity means identical twin personalities. Scientific research is ongoing to refine the cloning technology for applications in the production of genetically homogeneous farm animals with useful nutritional or therapeutic genetic traits. A new area of research is non-reproductive therapeutic cloning for the purpose of producing autologous embryonic cells and tissues for transplantation.  (+info)

Pig cloning by microinjection of fetal fibroblast nuclei. (29/733)

Pig cloning will have a marked impact on the optimization of meat production and xenotransplantation. To clone pigs from differentiated cells, we microinjected the nuclei of porcine (Sus scrofa) fetal fibroblasts into enucleated oocytes, and development was induced by electroactivation. The transfer of 110 cloned embryos to four surrogate mothers produced an apparently normal female piglet. The clonal provenance of the piglet was indicated by her coat color and confirmed by DNA microsatellite analysis.  (+info)

Effects of preactivation of ooplasts or synchronization of blastomere nuclei in G1 on preimplantation development of rabbit serial nuclear transfer embryos. (30/733)

Blastomeres from eight-cell-stage rabbit embryos have been fused with enucleated metaphase II oocytes (ooplasts) or with ooplasts that were preactivated before fusion. Preactivation of ooplasts before nuclear transfer (NT) raises the rate of preimplantation development from 15% to 56%, which remains elevated in the next series of NT (48.6% and 47.2% in the second and third rounds, respectively). Transfer of eight-cell embryos from the third round to the recipient resulted in the birth of normal young. Synchronization of blastomere nuclei in the G1 phase with nocodazole before fusion results in 42% morula/blastocyst formation. However, in the second generation of NT embryos, the yield drops to as low as 17%, indicating deleterious effects of the second nocodazole treatment on blastomeres. The calculated number of clones per one round of cloning was 4.5, 3.9, and 3.8 in subsequent series; the highest number of morulae and blastocysts that developed from individual donor embryos after three rounds were 26 and 27, respectively.  (+info)

In-vitro development of mouse zygotes following reconstruction by sequential transfer of germinal vesicles and haploid pronuclei. (31/733)

We evaluated whether mouse oocytes reconstructed by germinal vesicle (GV) transfer can develop to blastocyst stage. The oocytes were artificially activated with sequential treatment of A23187 and anisomycin; fertilization was then established by transfer or exchange of pronuclei with those of zygotes fertilized in vivo. Type 1 zygotes were constructed by placing the male haploid pronucleus from a zygote into the cytoplasm of an oocyte that underwent GV transfer, in-vitro maturation and activation; for type 2 zygotes, the female pronucleus was removed from a zygote and replaced with the female pronucleus of an oocyte subjected to GV transfer, in-vitro maturation and activation. Karyotypes of activated oocytes and type 2 zygotes were also subjected to analysis. When cultured in human tubal fluid (HTF) medium, reconstructed oocytes matured and, following artificial activation, consistently developed a pronucleus with a haploid karyotype; the activation rate for this medium was two- to three-fold higher than that of oocytes cultured in M199 (87% versus 30% respectively). Following transfer of a male pronucleus, only 47% of the type 1 zygotes developed to morula or blastocyst stage and embryo morphology was poor. In contrast, 73% of the type 2 zygotes developed to morula or blastocyst stage, many even hatching, with few morphological anomalies. Normal karyotypes were observed in 88% of the type 2 zygotes analysed. These observations demonstrate that the nucleus of a mouse oocyte subjected to sequential nuclear transfer at GV and pronucleus stages is, nonetheless, capable of maturing meiotically, activating normally and supporting embryonic development to hatching blastocyst stage. In contrast, the developmental potential of the cytoplasm of such oocytes appears to be compromised by these procedures.  (+info)

X-chromosome inactivation in XX androgenetic mouse embryos surviving implantation. (32/733)

Using genetic and cytogenetic markers, we assessed early development and X-chromosome inactivation (X-inactivation) in XX mouse androgenones produced by pronuclear transfer. Contrary to the current view, XX androgenones are capable of surviving to embryonic day 7.5, achieving basically random X-inactivation in all tissues including those derived from the trophectoderm and primitive endoderm that are characterized by paternal X-activation in fertilized embryos. This finding supports the hypothesis that in fertilized female embryos, the maternal X chromosome remains active until the blastocyst stage because of a rigid imprint that prevents inactivation, whereas the paternal X chromosome is preferentially inactivated in extra-embryonic tissues owing to lack of such imprint. In spite of random X-inactivation in XX androgenones, FISH analyses revealed expression of stable Xist RNA from every X chromosome in XX and XY androgenonetic embryos from the four-cell to morula stage. Although the occurrence of inappropriate X-inactivation was further suggested by the finding that Xist continues ectopic expression in a proportion of cells from XX and XY androgenones at the blastocyst and the early egg cylinder stage, a replication banding study failed to provide positive evidence for inappropriate X-inactivation at E6. 5.  (+info)