Molecular cloning and functional characterization of a new Cap'n' collar family transcription factor Nrf3. (57/36129)

The NF-E2-binding sites or Maf recognition elements (MARE) are essential cis-acting elements in the regulatory regions of erythroid-specific genes recognized by the erythroid transcription factor NF-E2, composed of p45 and MafK. Recently, two p45-related factors Nrf1 and Nrf2 were isolated, and they are now collectively grouped as the Cap'n' collar (CNC) family. CNC factors bind to MARE through heterodimer formation with small Maf proteins. We report here the identification and characterization of a novel CNC factor, Nrf3, encoding a predicted 73-kDa protein with a basic region-leucine zipper domain highly homologous to those of other CNC proteins. In vitro and in vivo analyses showed that Nrf3 can heterodimerize with MafK and that this complex binds to the MARE in the chicken beta-globin enhancer and can activate transcription. Nrf3 mRNA is highly expressed in human placenta and B cell and monocyte lineage. Chromosomal localization of human Nrf3 is 7p14-15, which lies near the hoxA gene locus. As the genetic loci of p45, nrf1, and nrf2 have been mapped close to those of hoxC, hoxB, and hoxD, respectively, the present study strongly argues for the idea that a single ancestral gene for the CNC family members may have been localized near the ancestral Hox cluster and have diverged to give rise to four closely related CNC factors through chromosome duplication.  (+info)

Regulation of the hypoxia-inducible transcription factor 1alpha by the ubiquitin-proteasome pathway. (58/36129)

HIF-1alpha (hypoxia-inducible factor 1alpha) is a basic-helix-loop-helix PAS (Per/Arnt/Sim) transcription factor that, under hypoxic conditions, dimerizes with a partner factor, the basic-helix-loop-helix/PAS protein Arnt, to recognize hypoxia-responsive elements of target genes. It has recently been demonstrated that HIF-1alpha protein but not mRNA levels are dramatically up-regulated in response to hypoxia. Here we show that inhibitors of 26 S proteasome activity produced a dramatic accumulation of endogenous as well as transfected HIF-1alpha protein under normoxic conditions, whereas the levels of Arnt protein were not affected. HIF-1alpha was polyubiquitinated in vivo under normoxic conditions, indicating rapid degradation via the ubiquitin-proteasome pathway. This degradation process appeared to target a region within the C terminus of HIF-1alpha. Importantly, HIF-1alpha ubiquitination was drastically decreased under hypoxic conditions. Up-regulation of HIF-1alpha protein by proteasome inhibitors did not result in transcriptional activation of reporter genes, indicating either the requirement of additional regulatory steps to induce functional activity of HIF-1alpha or the inability of polyubiquitinated forms of HIF-1alpha to mediate hypoxic signal transduction. In support of both these notions, we demonstrate that HIF-1alpha showed hypoxia-dependent translocation from the cytoplasm to the nucleus and that this regulatory mechanism was severely impaired in the presence of proteasome inhibitors. Taken together, these data demonstrate that the mechanism of hypoxia-dependent activation of HIF-1alpha is a complex multistep process and that stabilization of HIF-1alpha protein levels is not sufficient to generate a functional form.  (+info)

Competition between thyroid hormone receptor-associated protein (TRAP) 220 and transcriptional intermediary factor (TIF) 2 for binding to nuclear receptors. Implications for the recruitment of TRAP and p160 coactivator complexes. (59/36129)

Transcriptional activation by nuclear receptors (NRs) involves the concerted action of coactivators, chromatin components, and the basal transcription machinery. Crucial NR coactivators, which target primarily the conserved ligand-regulated activation (AF-2) domain, include p160 family members, such as TIF2, as well as p160-associated coactivators, such as CBP/p300. Because these coactivators possess intrinsic histone acetyltransferase activity, they are believed to function mainly by regulating chromatin-dependent transcriptional activation. Recent evidence suggests the existence of an additional NR coactivator complex, referred to as the thyroid hormone receptor-associated protein (TRAP) complex, which may function more directly as a bridging complex to the basal transcription machinery. TRAP220, the 220-kDa NR-binding subunit of the complex, has been identified in independent studies using both biochemical and genetic approaches. In light of the functional differences identified between p160 and TRAP coactivator complexes in NR activation, we have attempted to compare interaction and functional characteristics of TIF 2 and TRAP220. Our findings imply that competition between the NR-binding subunits of distinct coactivator complexes may act as a putative regulatory step in establishing either a sequential activation cascade or the formation of independent coactivator complexes.  (+info)

Processing of endogenous pre-mRNAs in association with SC-35 domains is gene specific. (60/36129)

Analysis of six endogenous pre-mRNAs demonstrates that localization at the periphery or within splicing factor-rich (SC-35) domains is not restricted to a few unusually abundant pre-mRNAs, but is apparently a more common paradigm of many protein-coding genes. Different genes are preferentially transcribed and their RNAs processed in different compartments relative to SC-35 domains. These differences do not simply correlate with the complexity, nuclear abundance, or position within overall nuclear space. The distribution of spliceosome assembly factor SC-35 did not simply mirror the distribution of individual pre-mRNAs, but rather suggested that individual domains contain both specific pre-mRNA(s) as well as excess splicing factors. This is consistent with a multifunctional compartment, to which some gene loci and their RNAs have access and others do not. Despite similar molar abundance in muscle fiber nuclei, nascent transcript "trees" of highly complex dystrophin RNA are cotranscriptionally spliced outside of SC-35 domains, whereas posttranscriptional "tracks" of more mature myosin heavy chain transcripts overlap domains. Further analyses supported that endogenous pre-mRNAs exhibit distinct structural organization that may reflect not only the expression and complexity of the gene, but also constraints of its chromosomal context and kinetics of its RNA metabolism.  (+info)

A monoclonal antibody to the COOH-terminal acidic portion of Ran inhibits both the recycling of Ran and nuclear protein import in living cells. (61/36129)

A small GTPase Ran is a key regulator for active nuclear transport. In immunoblotting analysis, a monoclonal antibody against recombinant human Ran, designated ARAN1, was found to recognize an epitope in the COOH-terminal domain of Ran. In a solution binding assay, ARAN1 recognized Ran when complexed with importin beta, transportin, and CAS, but not the Ran-GTP or the Ran-GDP alone, indicating that the COOH-terminal domain of Ran is exposed via its interaction with importin beta-related proteins. In addition, ARAN1 suppressed the binding of RanBP1 to the Ran-importin beta complex. When injected into the nucleus of BHK cells, ARAN1 was rapidly exported to the cytoplasm, indicating that the Ran-importin beta-related protein complex is exported as a complex from the nucleus to the cytoplasm in living cells. Moreover, ARAN1, when injected into the cultured cells induces the accumulation of endogenous Ran in the cytoplasm and prevents the nuclear import of SV-40 T-antigen nuclear localization signal substrates. From these findings, we propose that the binding of RanBP1 to the Ran-importin beta complex is required for the dissociation of the complex in the cytoplasm and that the released Ran is recycled to the nucleus, which is essential for the nuclear protein transport.  (+info)

From head to toes: the multiple facets of Sox proteins. (62/36129)

Sox proteins belong to the HMG box superfamily of DNA-binding proteins and are found throughout the animal kingdom. They are involved in the regulation of such diverse developmental processes as germ layer formation, organ development and cell type specifi-cation. Hence, deletion or mutation of Sox proteins often results in developmental defects and congenital disease in humans. Sox proteins perform their function in a complex interplay with other transcription factors in a manner highly dependent on cell type and promoter context. They exhibit a remarkable crosstalk and functional redundancy among each other.  (+info)

Hyperphosphorylation of replication protein A middle subunit (RPA32) in apoptosis. (63/36129)

Replication protein A (RPA) is a trimeric single-stranded DNA (ssDNA)-binding complex of eukaryotic cells that plays an important role in DNA metabolism by stabilising single-stranded regions of DNA. The functionally important binding activity towards ssDNA is mainly localised on the large subunit, RPA70, whereas the middle subunit, RPA32, appears to have a regulatory function. It has been shown previously that RPA32 is phosphorylated both during the S-phase of a normal cell cycle and in response to DNA damage. In this study we demonstrate that phosphorylation of RPA32 is rapidly induced during apoptotic cell death of Jurkat T-lymphocytes, resulting in a hyperphosphorylated form with reduced electrophoretic mobility. In contrast, the large subunit of RPA is neither modified nor cleaved during apoptosis. Phosphorylation of RPA32 begins in parallel to the degradation of DNA to high molecular weight fragments, and slowly continues until late apoptosis. Experiments with specific kinase inhibitors indicate that RPA32 hyperphosphorylation requires the activities of DNA-dependent protein kinase and of a cyclin-dependent protein kinase. Interestingly, the hyperphosphorylated, but not the less phosphorylated forms of RPA32, sediments independently from the trimeric complex in sucrose gradients under high ionic strength, and is not bound to the complex in immunoprecipitation assays.  (+info)

Peroxisome proliferator-activated receptors (PPARS) and carcinogenesis. (64/36129)

Peroxisome proliferators (PPs) are an important group of chemicals that include certain hypolipidemic drugs, plasticizers and pollutants. Many of these agents are known rodent liver tumor promoters and debate exists as to whether humans are at increased cancer risk following exposure to PPs. Research over the last decade has focused on determining the biochemical and molecular mechanisms by which peroxisome proliferators exert their effects, in the hope that this controversy will be settled. PPs regulate gene expression via a steroid hormone receptor, the peroxisome proliferator-activated receptor (PPAR). At least three subtypes of PPAR (alpha, beta and gamma) have been cloned from several species, including humans. These receptors have been implicated in tumor promotion, cellular differentiation, and apoptosis. In the present article, the current understanding of how PPARs are involved in tumorigenesis, and what this may mean to human risk assessment, will be discussed.  (+info)