Concomitant activation of pathways downstream of Grb2 and PI 3-kinase is required for MET-mediated metastasis. (1/1194)

The Met tyrosine kinase - the HGF receptor - induces cell transformation and metastasis when constitutively activated. Met signaling is mediated by phosphorylation of two carboxy-terminal tyrosines which act as docking sites for a number of SH2-containing molecules. These include Grb2 and p85 which couple the receptor, respectively, with Ras and PI 3-kinase. We previously showed that a Met mutant designed to obtain preferential coupling with Grb2 (Met2xGrb2) is permissive for motility, increases transformation, but - surprisingly - is impaired in causing invasion and metastasis. In this work we used Met mutants optimized for binding either p85 alone (Met2xPI3K) or p85 and Grb2 (MetPI3K/Grb2) to evaluate the relative importance of Ras and PI 3-kinase as downstream effectors of Met. Met2xPI3K was competent in eliciting motility, but not transformation, invasion, or metastasis. Conversely, MetP13K/Grb2 induced motility, transformation, invasion and metastasis as efficiently as wild type Met. Furthermore, the expression of constitutively active PI 3-kinase in cells transformed by the Met2xGrb2 mutant, fully rescued their ability to invade and metastasize. These data point to a central role for PI 3-kinase in Met-mediated invasiveness, and indicate that simultaneous activation of Ras and PI 3-kinase is required to unleash the Met metastatic potential.  (+info)

The nucleoporin nup153 plays a critical role in multiple types of nuclear export. (2/1194)

The fundamental process of nucleocytoplasmic transport takes place through the nuclear pore. Peripheral pore structures are presumably poised to interact with transport receptors and their cargo as these receptor complexes first encounter the pore. One such peripheral structure likely to play an important role in nuclear export is the basket structure located on the nuclear side of the pore. At present, Nup153 is the only nucleoporin known to localize to the surface of this basket, suggesting that Nup153 is potentially one of the first pore components an RNA or protein encounters during export. In this study, anti-Nup153 antibodies were used to probe the role of Nup153 in nuclear export in Xenopus oocytes. We found that Nup153 antibodies block three major classes of RNA export, that of snRNA, mRNA, and 5S rRNA. Nup153 antibodies also block the NES protein export pathway, specifically the export of the HIV Rev protein, as well as Rev-dependent RNA export. Not all export was blocked; Nup153 antibodies did not impede the export of tRNA or the recycling of importin beta to the cytoplasm. The specific antibodies used here also did not affect nuclear import, whether mediated by importin alpha/beta or by transportin. Overall, the results indicate that Nup153 is crucial to multiple classes of RNA and protein export, being involved at a vital juncture point in their export pathways. This juncture point appears to be one that is bypassed by tRNA during its export. We asked whether a physical interaction between RNA and Nup153 could be observed, using homoribopolymers as sequence-independent probes for interaction. Nup153, unlike four other nucleoporins including Nup98, associated strongly with poly(G) and significantly with poly(U). Thus, Nup153 is unique among the nucleoporins tested in its ability to interact with RNA and must do so either directly or indirectly through an adaptor protein. These results suggest a unique mechanistic role for Nup153 in the export of multiple cargos.  (+info)

Proteins connecting the nuclear pore complex with the nuclear interior. (3/1194)

While much has been learned in recent years about the movement of soluble transport factors across the nuclear pore complex (NPC), comparatively little is known about intranuclear trafficking. We isolated the previously identified Saccharomyces protein Mlp1p (myosin-like protein) by an assay designed to find nuclear envelope (NE) associated proteins that are not nucleoporins. We localized both Mlp1p and a closely related protein that we termed Mlp2p to filamentous structures stretching from the nucleoplasmic face of the NE into the nucleoplasm, similar to the homologous vertebrate and Drosophila Tpr proteins. Mlp1p can be imported into the nucleus by virtue of a nuclear localization sequence (NLS) within its COOH-terminal domain. Overexpression experiments indicate that Mlp1p can form large structures within the nucleus which exclude chromatin but appear highly permeable to proteins. Remarkably, cells harboring a double deletion of MLP1 and MLP2 were viable, although they showed a slower net rate of active nuclear import and faster passive efflux of a reporter protein. Our data indicate that the Tpr homologues are not merely NPC-associated proteins but that they can be part of NPC-independent, peripheral intranuclear structures. In addition, we suggest that the Tpr filaments could provide chromatin-free conduits or tracks to guide the efficient translocation of macromolecules between the nucleoplasm and the NPC.  (+info)

A conserved biogenesis pathway for nucleoporins: proteolytic processing of a 186-kilodalton precursor generates Nup98 and the novel nucleoporin, Nup96. (4/1194)

The mammalian nuclear pore complex (NPC) is comprised of approximately 50 unique proteins, collectively known as nucleoporins. Through fractionation of rat liver nuclei, we have isolated >30 potentially novel nucleoporins and have begun a systematic characterization of these proteins. Here, we present the characterization of Nup96, a novel nucleoporin with a predicted molecular mass of 96 kD. Nup96 is generated through an unusual biogenesis pathway that involves synthesis of a 186-kD precursor protein. Proteolytic cleavage of the precursor yields two nucleoporins: Nup98, a previously characterized GLFG-repeat containing nucleoporin, and Nup96. Mutational and functional analyses demonstrate that both the Nup98-Nup96 precursor and the previously characterized Nup98 (synthesized independently from an alternatively spliced mRNA) are proteolytically cleaved in vivo. This biogenesis pathway for Nup98 and Nup96 is evolutionarily conserved, as the putative Saccharomyces cerevisiae homologues, N-Nup145p and C-Nup145p, are also produced through proteolytic cleavage of a precursor protein. Using immunoelectron microscopy, Nup96 was localized to the nucleoplasmic side of the NPC, at or near the nucleoplasmic basket. The correct targeting of both Nup96 and Nup98 to the nucleoplasmic side of the NPC was found to be dependent on proteolytic cleavage, suggesting that the cleavage process may regulate NPC assembly. Finally, by biochemical fractionation, a complex containing Nup96, Nup107, and at least two Sec13- related proteins was identified, revealing that a major sub-complex of the NPC is conserved between yeast and mammals.  (+info)

Nup153 is an M9-containing mobile nucleoporin with a novel Ran-binding domain. (5/1194)

We employed a phage display system to search for proteins that interact with transportin 1 (TRN1), the import receptor for shuttling hnRNP proteins with an M9 nuclear localization sequence (NLS), and identified a short region within the N-terminus of the nucleoporin Nup153 which binds TRN1. Nup153 is located at the nucleoplasmic face of the nuclear pore complex (NPC), in the distal basket structure, and functions in mRNA export. We show that this Nup153 TRN1-interacting region is an M9 NLS. We found that both import and export receptors interact with several regions of Nup153, in a RanGTP-regulated fashion. RanGTP dissociates Nup153-import receptor complexes, but is required for Nup153-export receptor interactions. We also show that Nup153 is a RanGDP-binding protein, and that the interaction is mediated by the zinc finger region of Nup153. This represents a novel Ran-binding domain, which we term the zinc finger Ran-binding motif. We provide evidence that Nup153 shuttles between the nuclear and cytoplasmic faces of the NPC. The presence of an M9 shuttling domain in Nup153, together with its ability to move within the NPC and to interact with export receptors, suggests that this nucleoporin is a mobile component of the pore which carries export cargos towards the cytoplasm.  (+info)

RAE1 is a shuttling mRNA export factor that binds to a GLEBS-like NUP98 motif at the nuclear pore complex through multiple domains. (6/1194)

Gle2p is implicated in nuclear export of poly(A)+ RNA and nuclear pore complex (NPC) structure and distribution in Saccharomyces cerevisiae. Gle2p is anchored at the nuclear envelope (NE) via a short Gle2p-binding motif within Nup116p called GLEBS. The molecular mechanism by which Gle2p and the Gle2p-Nup116p interaction function in mRNA export is unknown. Here we show that RAE1, the mammalian homologue of Gle2p, binds to a GLEBS-like NUP98 motif at the NPC through multiple domains that include WD-repeats and a COOH-terminal non-WD-repeat extension. This interaction is direct, as evidenced by in vitro binding studies and chemical cross-linking. Microinjection experiments performed in Xenopus laevis oocytes demonstrate that RAE1 shuttles between the nucleus and the cytoplasm and is exported from the nucleus in a temperature-dependent and RanGTP-independent manner. Docking of RAE1 to the NE is highly dependent on new mRNA synthesis. Overexpression of the GLEBS-like motif also inhibits NE binding of RAE1 and induces nuclear accumulation of poly(A)+ RNA. Both effects are abrogated either by the introduction of point mutations in the GLEBS-like motif or by overexpression of RAE1, indicating a direct role for RAE1 and the NUP98-RAE1 interaction in mRNA export. Together, our data suggest that RAE1 is a shuttling transport factor that directly contributes to nuclear export of mRNAs through its ability to anchor to a specific NUP98 motif at the NPC.  (+info)

The Mex67p-mediated nuclear mRNA export pathway is conserved from yeast to human. (7/1194)

Human TAP is an orthologue of the yeast mRNA export factor Mex67p. In mammalian cells, TAP has a preferential intranuclear localization, but can also be detected at the nuclear pores and shuttles between the nucleus and the cytoplasm. TAP directly associates with mRNA in vivo, as it can be UV-crosslinked to poly(A)+ RNA in HeLa cells. Both the FG-repeat domain of nucleoporin CAN/Nup214 and a novel human 15 kDa protein (p15) with homology to NTF2 (a nuclear transport factor which associates with RanGDP), directly bind to TAP. When green fluorescent protein (GFP)-tagged TAP and p15 are expressed in yeast, they localize to the nuclear pores. Strikingly, co-expression of human TAP and p15 restores growth of the otherwise lethal mex67::HIS3/mtr2::HIS3 double knockout strain. Thus, the human TAP-p15 complex can functionally replace the Mex67p-Mtr2p complex in yeast and thus performs a conserved role in nuclear mRNA export.  (+info)

Caspase-dependent proteolysis of integral and peripheral proteins of nuclear membranes and nuclear pore complex proteins during apoptosis. (8/1194)

We have studied the fate of the nuclear envelope (NE) in different human cells committed to apoptosis by different chemical agents. Using a battery of antibodies against marker proteins of the three domains of the nuclear envelope, namely lamin B (LB) for the lamina, transmembrane proteins LBR and LAP2 for the inner nuclear membrane, and nucleoporins p62, Nup153 and gp210 for the nuclear pore complexes (NPCs), we observed a selective and conserved cleavage of LB, LAP2 and Nup153. In lymphoid cells, the rate of cleavage of these markers was independent of the apoptosis inducing agent, actinomycin D or etoposide, and more rapid than in attached epithelial cells. While lamin B is cleaved by caspase 6, the protease responsible for the cleavage of LAP2 and Nup153 was probably caspase 3, since (1) cleavage of both proteins was specifically prevented by in vivo addition of caspase 3 inhibitor Ac-DEVD-CHO and (2) consensus sites for these caspases are present in both proteins. As LB, LAP2 and Nup153 are exposed at the inner face of the nuclear envelope and all interact with chromatin, we suggest that their cleavage allows both the detachment of NE from chromatin and the clustering of NPCs in the plane of the membrane, two conserved morphological features of apoptosis observed in this study.  (+info)