Inner ear damage in guinea pigs exposed to stable and impulse noise. (9/1528)

OBJECTIVE: To investigate the inner ear damage after exposure to stable noise, impulse noise and stable plus impulse noise in guinea pigs. METHODS: Ninety-six healthy guinea pigs were divided into 3 equal groups. (1) Stable noise group: exposed to 110 dBA stable noise for 3 days, 4 hours per day. (2) Impulse noise group: exposed to 165 dBA simulated cannon fire impulse noise 10 times successively at an interval of 10 seconds. (3) stable plus impulse noise group: exposed to the same stable noise as that in the first group, then after a 2-hour rest, the animals were followed with impulse noise exposures as that in the second group. After those exposure, each of the 3 groups was further divided into 4 subgroups according to the time after the noise exposure, namely, the right after, 7 d, 14 d and 30 d groups. The evoked cortical potential responses to click and tone burst stimulation sound were examined. The surface preparation and celloidine embedded serial section of the cochlea were observed under a light microscope. RESULTS: Both the stable and impulse noise could increase the hearing threshold and damage the inner ear hair cells. The damage in the first group was relatively slight, whereas in group 3 the damage was more severe than that in the other 2 groups. CONCLUSION: For seamen who are working in heavy noise environment, corresponding measures should be taken to protect their ears from noise which induces hearing loss.  (+info)

Central and peripheral benzodiazepine ligands prevent mitochondrial damage induced by noise exposure in the rat myocardium: an ultrastructural study. (10/1528)

Noise represents an environmental stress factor affecting several organs and apparatuses, including the cardiovascular system. In experimental animals undergoing noise exposure, subcellular myocardial changes have been reported, especially at the mitochondrial level. In previous studies we found that diazepam, acting at both central and peripheral benzodiazepine receptors, prevented the onset of this myocardial damage. In the present study, we investigated the specific role played by central and/or peripheral benzodiazepine receptors in preventing noise-induced myocardial alterations. In particular, the effect of clonazepam as a selective ligand for central sites, in comparison with the efficacy of ligands selective for peripheral sites, such as Ro 5-4864 and PK-11195, was evaluated. Rats were pretreated with the test drugs 30 min before exposure to noise for 6 or 12 hr and then sacrificed. After fixing, samples of right atrium and ventricle were taken and processed for either transmission or scanning electron microscopy. After 6 hr of noise exposure, only the atrium exhibited significant mitochondrial alterations, whereas after 12 hr both atrium and ventricle were damaged. As expected, diazepam prevented noise-induced mitochondrial injury at both 6 and 12 hr. By contrast, clonazepam was effective only after 6 hr. The peripheral ligand PK-11195 attenuated mitochondrial damage at both 6 and 12 hr, whereas Ro 5-4864 was effective only after 12 hr. In the present study, we confirm that noise exposure induces mitochondrial damage in the rat myocardium. Drugs acting at both central and peripheral benzodiazepine receptors significantly prevent this damage. Differences in the amount and in the duration of the protective effect might depend on variability in the potency and in the pharmacokinetics of the specific drugs.  (+info)

Spectral integration by type II interneurons in dorsal cochlear nucleus. (11/1528)

The type II unit is a prominent inhibitory interneuron in the dorsal cochlear nucleus (DCN), most likely recorded from vertical cells. Type II units are characterized by low rates of spontaneous activity, weak responses to broadband noise, and vigorous, narrowly tuned responses to tones. The weak responses of type II units to broadband stimuli are unusual for neurons in the lower auditory system and suggest that these units receive strong inhibitory inputs, most likely from onset-C neurons of the ventral cochlear nucleus. The question of the definition of type II units is considered here; the characteristics listed in the preceding text define a homogeneous type II group, but the boundary between this group and other low spontaneous rate neurons in DCN (type I/III units) is not yet clear. Type II units in decerebrate cats were studied using a two-tone paradigm to map inhibitory responses to tones and using noisebands of varying width to study the inhibitory processes evoked by broadband stimuli. Iontophoresis of bicuculline and strychnine and comparisons of two-tone responses between type II units and auditory nerve fibers were used to differentiate inhibitory processes occurring near the cell from two-tone suppression in the cochlea. For type II units, a significant inhibitory region is always seen with two-tone stimuli; the bandwidth of this region corresponds roughly to the previously reported excitatory bandwidth of onset-C neurons. Bandwidth widening experiments with noisebands show a monotonic decline in response as the bandwidth increases; these data are interpreted as revealing strong inhibitory inputs with properties more like onset-C neurons than any other response type in the lower auditory system. Consistent with these properties, iontophoresis of inhibitory antagonists produces a large increase in discharge rate to broadband noise, making tone and noise responses nearly equal.  (+info)

Noise level of drilling instruments during mastoidectomy. (12/1528)

Exposure to intense noise has been identified as a potential risk in the development of hearing impairment. Social concern about excessive noise is increasing and this also extends to the operating room. A noise level study was performed in the operating room during mastoidectomy with a sound level meter and it was analyzed by a sound-analyzing program. The drilling instruments used included the Stryker, Midas, M.P.S. and Med-Next. The operator was exposed to sound levels from 69 to 83 dBA. The loudest drilling instrument was the Midas and it produced an average sound level of 83 dBA to the operator. The mean exposure time was 41 minutes during mastoidectomy. This is below the occupational noise-level regulations in Korea. However, considering that individual susceptibility to noise varies and that the otologic surgeon is repeatedly exposed to prolonged drilling noise, ear protection is recommended for the operators of high-speed drilling instruments.  (+info)

Heat stress and protection from permanent acoustic injury in mice. (13/1528)

The inner ear can be permanently damaged by overexposure to high-level noise; however, damage can be decreased by previous exposure to moderate level, nontraumatic noise (). The mechanism of this "protective" effect is unclear, but a role for heat shock proteins has been suggested. The aim of the present study was to directly test protective effects of heat stress in the ear. For physiological experiments, CBA/CaJ mice were exposed to an intense octave band of noise (8-16 kHz) at 100 dB SPL for 2 hr, either with or without previous whole-body heat stress (rectal temperature to 41. 5 degrees C for 15 min). The interval between heat stress and sound exposure varied in different groups from 6 to 96 hr. One week later, inner ear function was assessed in each animal via comparison of compound action potential thresholds to mean values from unexposed controls. Permanent threshold shifts (PTSs) were approximately 40 dB in the group sound-exposed without previous heat stress. Heat-stressed animals were protected from acoustic injury: mean PTS in the group with 6 hr heat-stress-trauma interval was reduced to approximately 10 dB. This heat stress protection disappeared when the treatment-trauma interval surpassed 24 hr. A parallel set of quantitative PCR experiments measured heat-shock protein mRNA in the cochlea and showed 100- to 200-fold increase over control 30 min after heat treatment, with levels returning to baseline at 6 hr after treatment. Results are consistent with the idea that upregulation of heat shock proteins protects the ear from acoustic injury.  (+info)

Comparative study of effects of impact tone and steady state tone exposure: EP and concentration of K+ ion and Na+ ion. (14/1528)

To test the adequacy of equal energy principle (EEP), guinea pigs were exposed to impact tone. The changes in electrophysiological data, namely endocochlear potential (EP) and the change in K+ ion and Na+ ion concentrations in the endolymph were investigated. The frequency of impact tone was 1 pulse/second or 1 pulse/3 seconds. The steady state tone had Leq24h = 100, 95, 90 or 85 dB, and impact tone had Leq24h = 95, 90 or 85 dB. The results are the following. Both steady state and impact tone exposure cause changes of electrophysiological data. The effects on the absolute value of negative EP induced by impact tone exposures were smaller than that of steady state tone of the same Leq. The rate of pulses was also an important factor for impact tone exposure. Impact tone exposure of 1 pulse/second caused smaller absolute value of negative EP than that of 1 pulse/3 seconds. The K+ ion concentration time course in the endolymph remained similar to the control (Exp. 1) only in Exp. 8 (85 dB; the lowest steady state noise exposure in our experiments), but no decrease in the K+ ion concentration was detected in the other experiments, suggesting an alteration in the K+ ion flow. The Na+ ion concentration time course was also influenced showing no increase in Na+ ion concentration compared to the control (Exp. 1c) and the lowest steady-state exposure experiment (Exp. 8c). Our experimental results suggest that both the K+ ion and Na+ ion movement are altered by tone exposure. We found also that the different types of noise exposure with the same Leq value does not exhibit the same changes. Leq24h is not an accurate damage risk criteria.  (+info)

Rescue of hearing, auditory hair cells, and neurons by CEP-1347/KT7515, an inhibitor of c-Jun N-terminal kinase activation. (15/1528)

We have studied the mechanisms of auditory hair cell death after insults in vitro and in vivo. We show DNA fragmentation of hair cell nuclei after ototoxic drug and intense noise trauma. By using phospho-specific c-Jun-N-terminal kinase (JNK) and c-Jun antibodies in immunohistochemistry, we show that the JNK pathway, associated with stress, injury, and apoptosis, is activated in hair cells after trauma. CEP-1347, a derivative of the indolocarbazole K252a, is a small molecule that has been shown to attenuate neurodegeneration by blocking the activation of JNK (). Subcutaneously delivered CEP-1347 attenuated noise-induced hearing loss. The protective effect was demonstrated by functional tests, which showed less hearing threshold shift in CEP-1347-treated than in nontreated guinea pigs, and by morphometric methods showing less hair cell death in CEP-1347-treated cochleas. In organotypic cochlear cultures, CEP-1347 prevented neomycin-induced hair cell death. In addition to hair cells, CEP-1347 promoted survival of dissociated cochlear neurons. These results suggest that therapeutic intervention in the JNK signaling cascade, possibly by using CEP-1347, may offer opportunities to treat inner ear injuries.  (+info)

Directionality derived from pinna-cue spectral notches in cat dorsal cochlear nucleus. (16/1528)

We tested two hypotheses to determine whether dorsal cochlear nucleus (DCN) neurons are specialized to derive directionality from spectral notches: DCN neurons exhibit greater spectral-dependent directionality than ventral cochlear nucleus (VCN) neurons, and spectral-dependent directionality depends on response minima (nulls) produced by coincidence of best frequency (BF) and spectral-notch center frequency. Single-unit responses to 50-ms noise and tone bursts were recorded in barbiturate-anesthetized cats (BFs: 4-37 kHz). Units were classified using BF tone poststimulus time histograms. Pauser, onset-G (type II interneurons), and some chopper units were recorded from the DCN. Primary-like, onset-CIL (onset other than onset-G), and most choppers in the sample were recorded from the VCN. Many pauser and onset-G units were highly directional to noise. Chopper, onset-CIL, and primary-like units (collectively referred to as C-O-P units) were not. The difference in directionality depends on a monaural mechanism as pausers were more directional to monaural noise than C-O-P units. Contralateral inhibition produced a small increase in pauser directionality to noise simulation but had no effect on directionality of C-O-P units. Pauser and C-O-P units exhibited similar low directionality to BF tone, showing that the difference in noise directionality between groups depends on spectral cues. These results show that spectral-dependent directionality is a DCN specialization. Azimuth functions of highly directional units exhibited response nulls, and there was a linear relationship between BFs in the range of 8-13 kHz and azimuthal locations of nulls. This relationship parallels the known spatial distribution of spectral-notch center frequencies on the horizontal plane. Furthermore spatial receptive fields of pausers show response nulls that follow the expected diagonal trajectory of the spectral notch in this frequency range. These results show that DCN spectral-dependent directionality depends on response nulls produced by coincidence of unit BF and spectral-notch center-frequency.  (+info)