NO metabolites accumulate in erythrocytes in proportion to carbon dioxide and bicarbonate concentration. (57/938)

It is not known whether the ratio between the concentrations of NO metabolites (NOx) in plasma (pNOx) and in erythrocytes (eNOx) is constant or correlates with chemical parameters of the blood. We measured pH, PO(2), and PCO(2) and calculated bicarbonate concentration in 19 blood samples from the aorta, coronary sinus, and leg veins of 7 dogs. Erythrocytes were then separated by centrifugation and lysed with distilled water, and the lysate was ultrafiltered with a molecular cutoff of 50 kDa to remove the hemoglobin. NOx were measured in plasma and in the ultrafiltrate. NOx concentration was higher in erythrocytes, with eNOx/pNOx ranging from 4.38 to 14.60. Linear and significant correlations were found between the natural logarithm of eNOx/pNOx and PCO(2) (r = 0.70, P < 0.001) or bicarbonate concentration (r = 0.72, P < 0.001). These results demonstrate, for the first time, that plasma NOx cannot be considered as a constant fraction of the total NOx in blood but varies dramatically in proportion to the CO(2)/bicarbonate concentration. To prevent an underestimation of venous-arterial difference of NOx across organs, NOx should be measured in whole blood.  (+info)

Nitric oxide-stimulated increase in extracellular adenosine accumulation in rat forebrain neurons in culture is associated with ATP hydrolysis and inhibition of adenosine kinase activity. (58/938)

Adenosine is a putative endogenous sleep-inducing substance, and nitric oxide has been implicated in arousal and sleep mechanisms. We found that various nitric oxide donors, including diethylamine NONOate (DEA/NO), stimulated large increases in extracellular adenosine in nearly pure cultures of forebrain neurons. The effect of DEA/NO could be blocked by 2-phenyl-4,4,5, 5-tetramethyl-imidazoline-1-oxyl-oxide and could not be mimicked by degraded solutions of DEA/NO or by DEA itself; therefore, it was caused by nitric oxide release on hydrolysis of the parent compound. The accumulation of adenosine was not blocked by probenecid or GMP, suggesting that neither extracellular cAMP nor extracellular AMP was the source, and that adenosine was therefore the most likely species transported across the plasma membrane. To pursue this further, we tested the effect of DEA/NO on cellular ATP and found a significant fall in ATP associated with exposure to nitric oxide. In addition, exposure to DEA/NO nearly completely inhibited adenosine kinase activity. It has been found previously that adenosine kinase is inhibited by its substrate, adenosine. We found that exposure to nitric oxide increased intracellular adenosine to 125 +/- 18% of control values (p < 0.01), consistent with the possibility that in our system the inhibition of adenosine kinase is related to an increase in intracellular adenosine, and that the effect of nitric oxide on extracellular adenosine is significantly potentiated by substrate inhibition of adenosine kinase. Furthermore, nitric oxide-stimulated adenosine accumulation may be important in the regulation of behavioral state.  (+info)

Peroxynitrite does not decompose to singlet oxygen ((1)Delta (g)O(2)) andnitroxyl (NO(-)). (59/938)

According to Khan et al. [Khan, A. U., Kovacic, D., Kolbanovskiy, A., Desai, M., Frenkel, K. & Geacintov, N. E. (2000) Proc. Natl. Acad. Sci. USA 97, 2984-2989], peroxynitrite (ONOO(-)) decomposes after protonation to singlet oxygen ((1)Delta(g)O(2)) and singlet oxonitrate (nitroxyl, (1)NO(-)) in high yield. They claimed to have observed nitrosyl hemoglobin from the reaction of NO(-) with methemoglobin; however, contamination with hydrogen peroxide gave rise to ferryl hemoglobin, the spectrum of which was mistakenly assigned to nitrosyl hemoglobin. We have carried out UV-visible and EPR experiments with methemoglobin and hydrogen peroxide-free peroxynitrite and find that no NO(-) is formed. With this peroxynitrite preparation, no light emission from singlet oxygen at 1270 nm is observed, nor is singlet oxygen chemically trapped; however, singlet oxygen was trapped when hydrogen peroxide was also present, as previously described [Di Mascio, P., Bechara, E. J. H., Medeiros, M. H. G., Briviba, K. & Sies, H. (1994) FEBS Lett. 355, 287-289]. Quantum mechanical and thermodynamic calculations show that formation of the postulated intermediate, a cyclic form of peroxynitrous acid (trioxazetidine), and the products (1)NO(-) and (1)Delta(g)O(2) requires Gibbs energies of ca. +415 kJ .mol(-1) and ca. +180 kJ.mol(-1), respectively. Our results show that the results of Khan et al. are best explained by interference from contaminating hydrogen peroxide left from the synthesis of peroxynitrite.  (+info)

Melatonin is protective in necrotic but not in caspase-dependent, free radical-independent apoptotic neuronal cell death in primary neuronal cultures. (60/938)

To assess the neuroprotective potential of melatonin in apoptotic neuronal cell death, we investigated the efficacy of melatonin in serum-free primary neuronal cultures of rat cortex by using three different models of caspase-dependent apoptotic, excitotoxin-independent neurodegeneration and compared it to that in necrotic neuronal damage. Neuronal apoptosis was induced by either staurosporine or the neurotoxin ethylcholine aziridinium (AF64A) with a delayed occurrence of apoptotic cell death (within 72 h). The apoptotic component of oxygen-glucose deprivation (OGD) unmasked by glutamate antagonists served as a third model. As a model for necrotic cell death, OGD was applied. Neuronal injury was quantified by LDH release and loss of metabolic activity. Although melatonin (0.5 mM) partly protected cortical neurons from OGD-induced necrosis, as measured by a significant reduction in LDH release, it was not effective in all three models of apoptotic cell death. In contrast, exaggeration of neuronal damage by melatonin was observed in native cultures as well as after induction of apoptosis. The present data suggest that the neuroprotectiveness of melatonin strongly depends on the model of neuronal cell death applied. As demonstrated in three different models of neuronal apoptosis, the progression of the apoptotic type of neuronal cell death cannot be withhold or is even exaggerated by melatonin, in contrast to its beneficial effect in the necrotic type of cell death.  (+info)

Oxidation of nitroxyl anion to nitric oxide by copper ions. (61/938)

1. This study made use of a nitric oxide-sensitive electrode to examine possible means of generating nitric oxide from nitroxyl anion (NO(-)) released upon the decomposition of Angeli's salt. 2. Our results show that copper ions (from CuSO(4)) catalyze the rapid and efficient oxidation of nitroxyl to nitric oxide. Indeed, the concentrations of copper required to do so (0.1 - 100 microM) are roughly 100-times lower than those required to generate equivalent amounts of nitric oxide from S-nitroso-N-acetyl-D,L-penicillamine (SNAP). 3. Experiments with ascorbate (1 mM), which reduces Cu(2+) ions to Cu(+), and with the Cu(2+) chelators, EDTA and cuprizone, and the Cu(+) chelator, neocuproine, each at 1 mM, suggest that the oxidation is catalyzed by copper ions in both valency states. 4. Some compounds containing other transition metals, i.e. methaemoglobin, ferricytochrome c and Mn(III)TMPyP, were much less efficient than CuSO(4) in catalyzing the formation of nitric oxide from nitroxyl, while FeSO(4), FeCl(3), MnCl(2), and ZnSO(4) were inactive. 5. Of the copper containing enzymes examined, Cu-Zn superoxide dismutase and ceruloplasmin were weak generators of nitric oxide from nitroxyl, even at concentrations (2500 and 30 u ml(-1), respectively) vastly greater than are present endogenously. Two others, ascorbate oxidase (10 u ml(-1)) and tyrosinase (250 u ml(-1)) were inactive. 6. Our findings suggest that a copper-containing enzyme may be responsible for the rapid oxidation of nitroxyl to nitric oxide by cells, but the identity of such an enzyme remains elusive.  (+info)

Mechanisms underlying induction of heme oxygenase-1 by nitric oxide in renal tubular epithelial cells. (62/938)

We examined whether nitric oxide-generating agents influence expression of heme oxygenase-1 (HO-1) in renal proximal tubular epithelial cells, LLC-PK(1) cells, and the mechanisms underlying any such effects. In sublytic amounts, the nitric oxide donor sodium nitroprusside induced HO-1 mRNA and protein and HO activity in a dose-dependent and time-dependent fashion; this induction was specific for nitric oxide since the nitric oxide scavenger carboxy-2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide significantly reduced such induction. The induction of HO activity by sodium nitroprusside, or by another nitric oxide donor, spermine NONOate, was markedly reduced by the iron chelator deferoxamine. Two different thiol-containing agents, N-acetylcysteine and dithiothreitol, blunted such induction of HO by nitric oxide. Downstream products of nitric oxide, such as peroxynitrite or cGMP, were not involved in inducing HO. In higher concentrations (millimolar amounts), sodium nitroprusside induced appreciable cytotoxicity as assessed by lactate dehydrogenase (LDH) release and lipid peroxidation, and both of these effects were markedly reduced by deferoxamine. Inhibition of HO did not affect the cytotoxic effects (measured by LDH release) of sodium nitroprusside. We thus provide the novel description of the induction of HO-1 in renal proximal tubular epithelial cells exposed to nitric oxide donors and provide the first demonstration in kidney-derived cells for the involvement of a redox-based mechanism in such expression. We also demonstrate that, in LLC-PK(1) cells exposed to nitric oxide donors, chelatable iron is involved in eliciting the HO-1 response observed at lower concentrations of these donors, and in mediating the cytotoxic effects of these donors when present in higher concentrations.  (+info)

Systemic hypoxia increases leukocyte emigration and vascular permeability in conscious rats. (63/938)

We recently observed that acute systemic hypoxia produces rapid increases in leukocyte adherence in the mesenteric microcirculation of the anesthetized rat Wood JG, Johnson JS, Mattioli LF, and Gonzalez NC. J Appl Physiol 87: 1734-1740, 1999; Wood JG, Mattioli LF, and Gonzalez NC. J Appl Physiol 87: 873-881, 1999. Hypoxia-induced leukocyte adherence is associated with an increase in reactive oxygen species (ROS) generation and is attenuated by antioxidants or interventions that increase tissue levels of nitric oxide (NO). These results suggest that the acute effects of hypoxia on leukocyte-endothelial interactions are caused by a change in the ROS-NO balance. The present experiments were designed to extend our observations of the initial microcirculatory response to hypoxia; specifically, we wanted to determine whether the response to systemic hypoxia involves increased microvascular permeability and leukocyte emigration and whether ROS generation and decreased NO levels contribute to these responses. At this time, there is conflicting evidence, from in vitro studies, regarding the effect of hypoxia on these indexes of vascular function. Our studies were carried out in the physiological setting of the conscious animal, in which a prolonged hypoxic exposure is possible without the adverse effects that may develop under anesthesia. The central observation of these studies is that conscious animals exposed for 4 h to environmental hypoxia show increased microvascular permeability and emigration of leukocytes into the extravascular space of the mesenteric circulation. Furthermore, these events are dependent on increased ROS generation and, possibly, a subsequent decrease in tissue NO levels during systemic hypoxia. Our results show that systemic hypoxia profoundly affects vascular endothelial function through changes in the ROS-NO balance in the conscious animal.  (+info)

Nitric oxide inhibits isoproterenol-stimulated adipocyte lipolysis through oxidative inactivation of the beta-agonist. (64/938)

Nitric oxide has been implicated in the inhibition of catecholamine-stimulated lipolysis in adipose tissue by as yet unknown mechanisms. In the present study, it is shown that the nitric oxide donor, 2,2-diethyl-1-nitroso-oxyhydrazine, antagonized isoproterenol (isoprenaline)-induced lipolysis in rat adipocytes, freshly isolated from white adipose tissue, by decreasing the potency of the beta-agonist without affecting its efficacy. These data suggest that nitric oxide did not act downstream of the beta-adrenoceptor but reduced the effective concentration of isoproterenol. In support of the latter hypothesis, we found that pre-treatment of isoproterenol with nitric oxide abolished the lipolytic activity of the catecholamine. Spectroscopic data and HPLC analysis confirmed that the nitric oxide-mediated inactivation of isoproterenol was in fact because of the modification of the catecholamine through a sequence of oxidation reactions, which apparently involved the generation of an aminochrome. Similarly, aminochrome was found to be the primary product of isoproterenol oxidation by 3-morpholinosydnonimine and peroxynitrite. Finally, it was shown that nitric oxide released from cytokine-stimulated adipocytes attenuated the lipolytic effect of isoproterenol by inactivating the catecholamine. In contrast with very recent findings, which suggest that nitric oxide impairs the beta-adrenergic action of isoproterenol through intracellular mechanisms and not through a chemical reaction between NO and the catecholamine, we showed that nitric oxide was able to attenuate the pharmacological activity of isoproterenol in vitro as well as in a nitric oxide-generating cellular system through oxidation of the beta-agonist. These findings should be taken into account in both the design and interpretation of studies used to investigate the role of nitric oxide as a modulator of isoproterenol-stimulated signal transduction pathways.  (+info)