Endogenous nitric oxide synthase inhibitor: a novel marker of atherosclerosis. (33/10638)

BACKGROUND: Exposure to risk factors such as hypertension or hypercholesterolemia decreases the bioavailability of endothelium-derived nitric oxide (NO) and impairs endothelium-dependent vasodilation. Recently, a circulating endogenous NO synthase inhibitor, asymmetric dimethylarginine (ADMA), has been detected in human plasma. The purpose of this study was to examine the relationship between plasma ADMA and atherosclerosis in humans. METHODS AND RESULTS: Subjects (n=116; age, 52+/-1 years; male:female ratio, 100:16) underwent a complete history and physical examination, determination of serum chemistries and ADMA levels, and duplex scanning of the carotid arteries. These individuals had no symptoms of coronary or peripheral artery disease and were taking no medications. Univariate and multivariate analyses revealed that plasma levels of ADMA were positively correlated with age (P<0.0001), mean arterial pressure (P<0.0001), and Sigma glucose (an index of glucose tolerance) (P=0.0006). Most intriguingly, stepwise regression analysis revealed that plasma ADMA levels were significantly correlated to the intima-media thickness of the carotid artery (as measured by high-resolution ultrasonography). CONCLUSIONS: This study reveals that plasma ADMA levels are positively correlated with risk factors for atherosclerosis. Furthermore, plasma ADMA level is significantly correlated with carotid intima-media thickness. Our results suggest that this endogenous antagonist of NO synthase may be a marker of atherosclerosis.  (+info)

Homocysteine increases nitric oxide synthesis in cytokine-stimulated vascular smooth muscle cells. (34/10638)

BACKGROUND: Elevated plasma homocysteine levels have been reported to be an independent risk factor for vascular disease. However, there have been no reports concerning the effects of homocysteine on the production of nitric oxide (NO), another modulator of vascular function and proliferation, by the vascular smooth muscle. METHODS AND RESULTS: We investigated the effects of homocysteine on NO synthesis by measuring the production of nitrite, a stable metabolite of NO, in cultured rat vascular smooth muscle cells (VSMCs). Incubation of cultures with interleukin (IL)-1beta 10 ng/mL for 24 hours caused a significant increase in nitrite generation. The IL-1beta-induced nitrite production by VSMCs was significantly increased by homocysteine in a dose-dependent manner. This effect of homocysteine was significantly inhibited in the presence of NG-monomethyl-L-arginine or actinomycin D. The homocysteine-induced nitrite production was accompanied by increased inducible NO synthase mRNA and protein accumulation. Cysteine, glutathione, or hydrogen peroxide also increased nitrite accumulation in IL-1beta-stimulated VSMCs. Coincubation with the radical scavenger catalase or superoxide dismutase markedly reduced homocysteine-induced nitrite accumulation. CONCLUSIONS: Homocysteine enhances NO synthesis in IL-1beta-stimulated VSMCs, and oxidative products are involved in the effect of homocysteine.  (+info)

Regression of atherosclerosis: role of nitric oxide and apoptosis. (35/10638)

BACKGROUND: We have recently found that administration of L-arginine to hypercholesterolemic rabbits induces regression of preexisting lesions. Others have previously shown that activation of the L-arginine/nitric oxide (NO) synthase pathway can induce apoptosis of vascular cells in vitro. Accordingly, the current study was designed to determine if dietary supplementation of L-arginine induces apoptosis of intimal lesions and if this effect is mediated through the NO synthase pathway. METHODS AND RESULTS: Male New Zealand White rabbits were fed a 0.5% cholesterol diet for 10 weeks and subsequently placed on 2.5% L-arginine HCl in the drinking water, and the cholesterol diet was continued for 2 weeks, at which time the aortas were harvested for histological studies. L-Arginine treatment increased the number of apoptotic cells (largely macrophages) in the intimal lesions by 3-fold (11.9+/-3.9 vs 3.9+/-1. 4 apoptotic cells/mm2, P<0.01). In subsequent studies, aortas were harvested for ex vivo studies. Aortic segments were incubated in cell culture medium for 4 to 24 hours with modulators of the NO synthase pathway. The tissues were then collected for histological studies and the conditioned medium collected for measurement of nitrogen oxides by chemiluminescence. Addition of sodium nitroprusside (10(-5) mol/L) to the medium caused a time-dependent increase in apoptosis of vascular cells (largely macrophages) in the intimal lesion. L-Arginine (10(-3) mol/L) had an identical effect on apoptosis, which was associated with an increase in nitrogen oxides released into the medium. These effects were not mimicked by D-arginine, and they were antagonized by the NO synthase inhibitor L-nitro-arginine (10(-4) mol/L). The effect of L-arginine was not influenced by an antagonist of cGMP-dependent protein kinase, nor was the effect mimicked by the agonist of protein kinase G or 8-BR cGMP. CONCLUSIONS: These results indicate that supplemental L-arginine induces apoptosis of macrophages in intimal lesions by its metabolism to NO, which acts through a cGMP-independent pathway. These studies are consistent with our previous observation that supplementation of dietary arginine induces regression of atheroma in this animal model. These studies provide a rationale for further investigation of the therapeutic potential of manipulating the NO synthase pathway in atherosclerosis.  (+info)

Effects of hypertension, diabetes mellitus, and hypercholesterolemia on endothelin type B receptor-mediated nitric oxide release from rat kidney. (36/10638)

BACKGROUND: Although endothelin-1 is a potent vasoconstrictor peptide, stimulation of endothelin type B receptor (ETBR) causes bidirectional changes in vascular tone, ie, vasodilation and vasoconstriction. Roles of ETBR in pathological conditions are largely unknown. METHODS AND RESULTS: We studied the effect of BQ-3020, a highly selective ETBR agonist, on renal vascular resistance and nitric oxide (NO) release in the isolated, perfused kidney of rats with hypertension, diabetes mellitus, and hypercholesterolemia. Immunohistochemistry of endothelial NO synthase and ETBR was also examined. Infusion of BQ-3020 at concentrations of +info)

Nitric oxide. II. Nitric oxide protects in intestinal inflammation. (37/10638)

This article examines the evidence for nitric oxide (NO) as a protective agent in splanchnic ischemia-reperfusion and other forms of acute intestinal inflammation. Four major points emerge from this body of data. First, acute intestinal inflammation results in an early (i.e., <5 min) and severe decrease in endothelium-derived NO. Thus the early trigger event in this condition is a functional loss of NO. Second, administration of exogenous NO, NO donors, or NO precursors ameliorate splanchnic ischemia-reperfusion and other forms of acute intestinal inflammation (i.e., splanchnic trauma). These beneficial effects occur at physiological levels of NO when given early in the course of the inflammatory state. Third, blockade of nitric oxide synthase (NOS) or gene deletion of NOS exacerbates intestinal inflammation. Fourth, there are a variety of signaling mechanisms that may mediate the protective effect of NO.  (+info)

Prolonged colonic epithelial hyporesponsiveness after colitis: role of inducible nitric oxide synthase. (38/10638)

Colonic epithelial secretion is an important host defense mechanism. We examined whether a bout of colitis would produce long-lasting changes in epithelial function that persisted after resolution of mucosal inflammation. Colitis was induced in rats with intracolonic trinitrobenzenesulfonic acid. Six weeks later, colonic damage and inducible nitric oxide synthase (iNOS) mRNA expression and activity were measured. Segments of distal colon were mounted in Ussing chambers for measurement of permeability and responsiveness to secretory stimuli. Basal electrolyte transport parameters and permeability were not different from untreated controls. Despite normal macroscopic and histological appearance, secretory responses to electrical field stimulation (EFS), isobutylmethylxanthine (IBMX), and carbachol were significantly depressed (by 60-70%) relative to controls. iNOS mRNA expression and enzyme activity were significantly elevated. Dexamethasone reversed epithelial hyporesponsiveness and significantly reduced iNOS mRNA expression. A selective iNOS inhibitor normalized the secretory responses to EFS and IBMX but not to carbachol. These data suggest that ongoing synthesis of nitric oxide by iNOS contributes to chronic suppression of epithelial secretory function after episodes of colitis.  (+info)

Gender differences in coronary artery diameter reflect changes in both endothelial Ca2+ and ecNOS activity. (39/10638)

Elevation of nitric oxide (NO) release from the vascular endothelium may contribute to some of the gender-associated differences in coronary artery function. The mechanisms by which gender affects NO release from the endothelium of coronary arteries are not known. In this study, endothelial function was examined in pressurized coronary arteries from female and male rats. Diameter and endothelial cell intracellular Ca2+ concentration ([Ca2+]i) in intact arteries, as well as enzymatic activity of endothelial constitutive nitric oxide synthase (ecNOS) in arterial lysates, was measured. Elevation of intravascular pressure to 60 mmHg constricted coronary arteries from female animals less than coronary arteries from male animals (18% and 31% constriction, respectively). The increased arterial diameter of coronary arteries from females was associated with elevated endothelial [Ca2+]i (female 174 nM, male 90 nM; P < 0.001). Elevation of Ca2+ activated ecNOS with a similar slope and half-activation constant ( approximately 160 nM) for both female and male coronary arteries. However, at [Ca2+] > 100 nM, ecNOS activity was significantly higher in coronary arteries from female rats compared with their male equivalents (P < 0.01). Maximal activity for ecNOS at saturating Ca2+ (300 nM) was 37% higher in coronary arteries from female animals compared with male animals (P < 0.05). Thus elevated [Ca2+]i in the endothelium of female coronary arteries alone is predicted to increase the production of NO (by nearly 2-fold). This gender difference combined with increased ecNOS activity at a given [Ca2+] in females indicates that tonic NO production should be nearly threefold greater in female coronary arteries compared with male coronary arteries. We conclude that, in the regulation of endothelial Ca2+ and ecNOS, gender differences contribute significantly to the overall decrease in myogenic tone observed in coronary arteries of females.  (+info)

Role of nitric oxide-derived oxidants in vascular injury from carbon monoxide in the rat. (40/10638)

Studies were conducted with rats to investigate whether exposure to CO at concentrations frequently found in the environment caused nitric oxide (NO)-mediated vessel wall changes. Exposure to CO at concentrations of 50 parts per million or higher for 1 h increased the concentration of nitrotyrosine in the aorta. Immunologically reactive nitrotyrosine was localized in a discrete fashion along the endothelial lining, and this was inhibited by pretreatment with the NO synthase (NOS) inhibitor Nomega-nitro-L-arginine methyl ester (L-NAME). The CO-induced elevations of aortic nitrotyrosine were not altered by neutropenia or thrombocytopenia, and CO caused no change in the concentration of endothelial NOS. Consequences from NO-derived stress on the vasculature included an enhanced transcapillary efflux of albumin within the first 3 h after CO exposure and leukocyte sequestration that became apparent 18 h after CO exposure. Oxidized plasma low-density lipoprotein was found immediately after CO exposure, but this was not inhibited by L-NAME pretreatment. We conclude that exposure to relatively low CO concentrations can alter vascular status by several mechanisms and that many changes are linked to NO-derived oxidants.  (+info)