Temperature dependence of inorganic nitrogen uptake: reduced affinity for nitrate at suboptimal temperatures in both algae and bacteria. (65/4235)

Nitrate utilization and ammonium utilization were studied by using three algal isolates, six bacterial isolates, and a range of temperatures in chemostat and batch cultures. We quantified affinities for both substrates by determining specific affinities (specific affinity = maximum growth rate/half-saturation constant) based on estimates of kinetic parameters obtained from chemostat experiments. At suboptimal temperatures, the residual concentrations of nitrate in batch cultures and the steady-state concentrations of nitrate in chemostat cultures both increased. The specific affinity for nitrate was strongly dependent on temperature (Q10 approximately 3, where Q10 is the proportional change with a 10 degrees C temperature increase) and consistently decreased at temperatures below the optimum temperature. In contrast, the steady-state concentrations of ammonium remained relatively constant over the same temperature range, and the specific affinity for ammonium exhibited no clear temperature dependence. This is the first time that a consistent effect of low temperature on affinity for nitrate has been identified for psychrophilic, mesophilic, and thermophilic bacteria and algae. The different responses of nitrate uptake and ammonium uptake to temperature imply that there is increasing dependence on ammonium as an inorganic nitrogen source at low temperatures.  (+info)

Chemiluminescent detection of oxidants in vascular tissue. Lucigenin but not coelenterazine enhances superoxide formation. (66/4235)

Lucigenin-amplified chemiluminescence has frequently been used to assess the formation of superoxide in vascular tissues. However, the ability of lucigenin to undergo redox cycling in purified enzyme-substrate mixtures has raised questions concerning the use of lucigenin as an appropriate probe for the measurement of superoxide production. Addition of lucigenin to reaction mixtures of xanthine oxidase plus NADH resulted in increased oxygen consumption, as well as superoxide dismutase-inhibitable reduction of cytochrome c, indicative of enhanced rates of superoxide formation. Additionally, it was revealed that lucigenin stimulated oxidant formation by both cultured bovine aortic endothelial cells and isolated rings from rat aorta. Lucigenin treatment resulted in enhanced hydrogen peroxide release from endothelial cells, whereas exposure to lucigenin resulted in inhibition of endothelium-dependent relaxation in isolated aortic rings that was superoxide dismutase inhibitable. In contrast, the chemiluminescent probe coelenterazine had no significant effect on xanthine oxidase-dependent oxygen consumption, endothelial cell hydrogen peroxide release, or endothelium-dependent relaxation. Study of enzyme and vascular systems indicated that coelenterazine chemiluminescence is a sensitive marker for detecting both superoxide and peroxynitrite.  (+info)

Effect of nitric oxide donors on renal tubular epithelial cell-matrix adhesion. (67/4235)

BACKGROUND: Nitric oxide (NO) and its metabolite, peroxynitrite (ONOO-), are involved in renal tubular cell injury. We postulated that if NO/ONOO- has an effect to reduce cell adhesion to the basement membrane, this may contribute to tubular obstruction and may be partially responsible for the harmful effect of NO on the tubular epithelium during acute renal failure (ARF). METHODS: We examined the effect of the NO donors (z)-1-[2-(2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1- ium-1, 2-diolate (DETA/NO), spermine NONOate (SpNO), and the ONOO- donor 3-morpholinosydnonimine (SIN-1) on cell-matrix adhesion to collagen types I and IV and fibronectin using three renal tubular epithelial cell lines: LLC-PK1, BSC-1, and OK. RESULTS: In LLC-PK1 cells, DETA/NO (500 microM) had no effect, and SpNO (500 microM) had a modest effect on cell adhesion compared with controls. Exposure to SIN-1 caused a dose-dependent impairment in cell-matrix adhesion. Similar results were obtained in the different cell types and matrix proteins. The effect of SIN-1 (500 microM) on LLC-PK1 cell adhesion was not associated with either cell death or alteration of matrix protein and was attenuated by either the NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide, the superoxide scavenger superoxide dismutase, or the ONOO- scavenger uric acid in a dose-dependent manner. CONCLUSIONS: These results therefore support the possibility that ONOO- generated in the tubular epithelium during ischemia/reperfusion has the potential to impair the adhesion properties of tubular cells, which then may contribute to the tubular obstruction in ARF.  (+info)

Protein modification during biological aging: selective tyrosine nitration of the SERCA2a isoform of the sarcoplasmic reticulum Ca2+-ATPase in skeletal muscle. (68/4235)

The accumulation of covalently modified proteins is an important hallmark of biological aging, but relatively few studies have addressed the detailed molecular-chemical changes and processes responsible for the modification of specific protein targets. Recently, Narayanan et al. [Narayanan, Jones, Xu and Yu (1996) Am. J. Physiol. 271, C1032-C1040] reported that the effects of aging on skeletal-muscle function are muscle-specific, with a significant age-dependent change in ATP-supported Ca2+-uptake activity for slow-twitch but not for fast-twitch muscle. Here we have characterized in detail the age-dependent functional and chemical modifications of the rat skeletal-muscle sarcoplasmic-reticulum (SR) Ca2+-ATPase isoforms SERCA1 and SERCA2a from fast-twitch and slow-twitch muscle respectively. We find a significant age-dependent loss in the Ca2+-ATPase activity (26% relative to Ca2+-ATPase content) and Ca2+-uptake rate specifically in SR isolated from predominantly slow-twitch, but not from fast-twitch, muscles. Western immunoblotting and amino acid analysis demonstrate that, selectively, the SERCA2a isoform progressively accumulates a significant amount of nitrotyrosine with age (approximately 3.5+/-0. 7 mol/mol of SR Ca2+-ATPase). Both Ca2+-ATPase isoforms suffer an age-dependent loss of reduced cysteine which is, however, functionally insignificant. In vitro, the incubation of fast- and slow-twitch muscle SR with peroxynitrite (ONOO-) (but not NO/O2) results in the selective nitration only of the SERCA2a, suggesting that ONOO- may be the source of the nitrating agent in vivo. A correlation of the SR Ca2+-ATPase activity and covalent protein modifications in vitro and in vivo suggests that tyrosine nitration may affect the Ca2+-ATPase activity. By means of partial and complete proteolytic digestion of purified SERCA2a with trypsin or Staphylococcus aureus V8 protease, followed by Western-blot, amino acid and HPLC-electrospray-MS (ESI-MS) analysis, we localized a large part of the age-dependent tyrosine nitration to the sequence Tyr294-Tyr295 in the M4-M8 transmembrane domain of the SERCA2a, close to sites essential for Ca2+ translocation.  (+info)

Autoinhibition of neuronal nitric oxide synthase: distinct effects of reactive nitrogen and oxygen species on enzyme activity. (69/4235)

Nitric oxide (NO) synthases (NOSs), which catalyse the oxidation of L-arginine to L-citrulline and an oxide of nitrogen, possibly NO or nitroxyl (NO-), are subject to autoinhibition by a mechanism that has yet to be fully elucidated. In the present study we investigated the actions of NO and other NOS-derived products as possible autoregulators of enzyme activity. With the use of purified NOS-I, L-arginine turnover was found to operate initially at Vmax (0-15 min, phase I) although, despite the presence of excess substrate and cofactors, prolonged catalysis (15-90 min, phase II) was associated with a rapid decline in L-arginine turnover. Taken together, these observations suggested that one or more NOS products inactivate NOS. Indeed, exogenously applied reactive nitrogen oxide species (RNSs) decreased Vmax during phase I, although with different potencies (NO->NO> ONOO-) and efficacies (NO>NO-=ONOO-). The NO scavengers oxyhaemoglobin (HbO2; 100 microM) and 1H-imidazol-1 - yloxy - 2 - (4-carboxyphenyl) - 4,5 - dihydro - 4,4,5,5 - tetramethyl - 3 -oxide (CPTIO; 10 microM) and the ONOO- scavenger GSH (7 mM) had no effect on NOS activity during phase I, except for an endogenous autoinhibitory influence of NO and ONOO-. However, superoxide dismutase (SOD; 300 units/ml), which is thought either to increase the half-life of NO or to convert NO- to NO, lowered Vmax in an NO-dependent manner because this effect was selectively antagonized by HbO2 (100 microM). This latter observation demonstrated the requirement of SOD to reveal endogenous NO-mediated autoinhibition. Importantly, during phase II of catalysis, NOS became uncoupled and began to form H2O2 because catalase, which metabolizes H2O2, increased enzyme activity. Consistent with this, exogenous H2O2 also inhibited NOS activity during phase I. Thus during catalysis NOS is subject to complex autoinhibition by both enzyme-derived RNS and H2O2, differentially affecting enzyme activity.  (+info)

Nitric Oxide. V. therapeutic potential of nitric oxide donors and inhibitors. (70/4235)

Nitric oxide is a crucial mediator of gastrointestinal mucosal defense, but, paradoxically, it also contributes to mucosal injury in several situations. Inhibitors of nitric oxide synthesis and compounds that release nitric oxide have been useful pharmacological tools for evaluating the role of nitric oxide in gastrointestinal physiology and pathophysiology. Newer inhibitors with selectivity for one of the isoforms of nitric oxide synthase are even more powerful tools and may have utility as therapeutic agents. Also, agents that can scavenge nitric oxide or peroxynitrite are promising as drugs to prevent nitric oxide-associated tissue injury. Compounds that release nitric oxide in small amounts over a prolonged period of time may also be very useful for prevention of gastrointestinal injury associated with shock and with the use of drugs that have ulcerogenic effects. Indeed, the coupling of a nitric oxide-releasing moiety to nonsteroidal anti-inflammatory drugs has proven to be a valid means of substantially reducing the gastrointestinal toxicity of these drugs without decreasing their efficacy.  (+info)

Peroxynitrite contributes to spontaneous loss of cardiac efficiency in isolated working rat hearts. (71/4235)

We examined the mechanism of the time- and protein synthesis-dependent decline in cardiac mechanical function in isolated working rat hearts. Hearts were perfused with Krebs-Henseleit buffer for 120 min in the presence or absence of the protein synthesis inhibitor cycloheximide (CX; 10 microM). Cardiac work remained stable for 60 min and then spontaneously decreased during 60-120 min of perfusion. This was accompanied by an increase in myocardial inducible nitric oxide synthase (iNOS) and xanthine oxidase (XO) activities and enhanced dityrosine formation in the perfusate, an indicator of peroxynitrite generation. CX markedly attenuated the loss in contractile function and prevented the increase in iNOS and XO activities and dityrosine level. Despite the decline in cardiac work in control hearts, the coupling between tricarboxylic acid (TCA) cycle activity and oxygen consumption remained constant in both groups. ATP, creatine phosphate, and glycogen levels were not different between control and CX groups and did not differ over 120 min of perfusion. We concluded that the delayed and spontaneous loss in myocardial mechanical function in isolated working rat hearts is 1) attenuated by CX treatment, 2) accompanied by a concomitant increase in both iNOS and XO activities and peroxynitrite generation in the heart, and 3) not dependent on a direct impairment in myocardial ATP production, myocardial oxygen consumption, or TCA cycle acetyl-CoA production but may be due to an inefficiency of the heart to utilize ATP for contractile work.  (+info)

Hemoglobin protects from streptococcal cell wall-induced arthritis. (72/4235)

OBJECTIVE: To investigate the ability of hemoglobin (Hgb), a nitric oxide (NO) scavenger, to deplete excess NO and reduce inflammation and injury in synovial tissue from joints with inflammatory arthritis. METHODS: The severity of streptococcal cell wall-induced arthritis was monitored following administration of Hgb. Plasma nitrite and nitrate levels were measured, and inducible NO synthase (iNOS) and cytokine messenger RNA (mRNA) expression in peripheral blood mononuclear cells (PBMC) and joint tissue were evaluated. RESULTS: Following systemic administration of Hgb to arthritic rats, plasma levels of nitrite and nitrate as well as iNOS mRNA expression in the joints and PBMC were significantly reduced. Moreover, inflammatory cell accumulation and disease pathology in the joint tissue were dramatically attenuated without obvious side effects. Consistent with this reduction in the inflammatory response, cytokine gene expression was decreased in the synovium of Hgb-treated rats. CONCLUSION: Modulation of NO levels through the use of a NO scavenger, Hgb, influences the development and severity of arthritis. These findings suggest that depletion of excess NO by NO scavengers provides a prototype for further exploration of potential treatments for chronic arthritis.  (+info)