Leukocyte and endothelial cell adhesion molecules in a chronic murine model of myocardial reperfusion injury. (41/1555)

Expression of endothelial and leukocyte cell adhesion molecules is a principal determinant of polymorphonuclear neutrophil (PMN) recruitment during inflammation. It has been demonstrated that pharmacological inhibition of these molecules can attenuate PMN influx and subsequent tissue injury. We determined the temporal expression of alpha-granule membrane protein-40 (P-selectin), endothelial leukocyte adhesion molecule 1 (E-selectin), and intercellular cell adhesion molecule 1 (ICAM-1) after coronary artery occlusion and up to 3 days of reperfusion. The expression of all of these cell adhesion molecules peaked around 24 h of reperfusion. We determined the extent to which these molecules contribute to PMN infiltration by utilizing mice deficient (-/-) in P-selectin, E-selectin, ICAM-1, and CD18. Each group underwent 30 min of in vivo, regional, left anterior descending (LAD) coronary artery ischemia and 24 h of reperfusion. PMN accumulation in the ischemic-reperfused (I/R) zone was assessed using histological techniques. Deficiencies of P-selectin, E-selectin, ICAM-1, or CD18 resulted in significant (P < 0.05) attenuation of PMN infiltration into the I/R myocardium (MI/R). In addition, P-selectin, E-selectin, ICAM-1, and CD18 -/- mice exhibited significantly (P < 0.05) smaller areas of necrosis after MI/R compared with wild-type mice. These data demonstrate that MI/R induces coronary vascular expression of P-selectin, E-selectin, and ICAM-1 in mice. Furthermore, genetic deficiency of P-selectin, E-selectin, ICAM-1, or CD18 attenuates PMN sequestration and myocardial injury after in vivo MI/R. We conclude that P-selectin, E-selectin, ICAM-1, and CD18 are involved in the pathogenesis of MI/R injury in mice.  (+info)

Interleukin-1beta -induced changes in blood-brain barrier permeability, apparent diffusion coefficient, and cerebral blood volume in the rat brain: a magnetic resonance study. (42/1555)

The cytokine interleukin-1beta (IL-1beta) is implicated in a broad spectrum of CNS pathologies, in which it is thought to exacerbate neuronal loss. Here, the effects of injecting recombinant rat IL-1beta into the striatum of 3-week-old rats were followed noninvasively from 2 to 123 hr using magnetic resonance imaging and spectroscopy. Four hours after injection of IL-1beta (1 ng in 1 microliter), cerebral blood volume was significantly increased, the blood-brain barrier (BBB) became permeable to intravenously administered contrast agent between 4.5 and 5 hr, and the apparent diffusion coefficient (ADC) of brain water fell by 6 hr (5.42 +/- 0. 35 x 10(-4) mm(2)/sec treated, 7.35 +/- 0.77 x 10(-)(4) mm(2)/sec control; p < 0.001). At 24 hr the BBB was again intact, but the ADC, although partially recovered, remained depressed at both 24 and 123 hr (p < 0.03). Depleting the animals of neutrophils before IL-1beta injection prevented the BBB permeability at all time points, but the ADC was still depressed at 6 hr (6.64 +/- 0.34 x 10(-4) mm(2)/sec treated, 7.49 +/- 0.38 x 10(-4) mm(2)/sec control; p < 0.005). No changes were seen in brain metabolites using proton spectroscopy at 6 hr after IL-1beta. Intraparenchymal injection of IL-1beta caused a neutrophil-dependent transient increase in BBB permeability. The presence of neutrophils within the brain parenchyma significantly contributed to the IL-1beta-induced changes in cerebral blood volume and the ADC of brain water. However, IL-1beta apparently had a direct effect on the resident cell populations, which persisted well after all recruited leukocytes had disappeared. Thus the action of IL-1beta alone can give rise to magnetic resonance imaging-visible changes that are normally attributed to alterations to cellular homeostasis.  (+info)

A(2A) adenosine receptor-mediated inhibition of renal injury and neutrophil adhesion. (43/1555)

We sought to determine the mechanisms responsible for the reduced renal tissue injury by agonists of A(2A) adenosine receptors (A(2A)-ARs) in models of ischemia-reperfusion (I/R) injury. DWH-146e, a selective A(2A)-AR agonist, was administered subcutaneously to Sprague-Dawley rats and C57BL/6 mice via osmotic minipumps, and animals were subjected to I/R. I/R led to an increase in plasma creatinine and kidney neutrophil infiltration. Infusion of DWH-146e at 10 ng. kg(-1). min(-1) produced a 70% reduction in plasma creatinine as well as a decrease in neutrophil density in outer medulla and cortex and myeloperoxidase activity in the reperfused kidney. Myeloperoxidase activity in kidney correlated with the degree of renal injury. P-selectin and intercellular adhesion molecule 1 (ICAM-1) immunoreactivity were most prominent in endothelial cells of peritubular capillaries and interlobular arteries of cortex and outer and inner medulla of vehicle-treated mice whose kidneys were subjected to I/R. DWH-146e treatment led to a pronounced decrease in P-selectin- and ICAM-1-like immunoreactivity. These data are consistent with our hypothesis that A(2A)-AR agonists limit I/R injury due to an inhibitory effect on neutrophil adhesion.  (+info)

Quantitative trait loci modulate neutrophil infiltration in the liver during LPS-induced inflammation. (44/1555)

A crucial aspect of the inflammatory response is the recruitment of activated neutrophils (PMN) to the site of damage. Lytic enzymes and oxygen radicals released by PMN are important in clearing an infection or cellular debris, but can also produce host tissue damage. Failure to properly regulate the inflammatory response contributes to a variety of human diseases like sepsis and multiple organ dysfunction syndrome, the leading cause of morbidity and mortality in surgical intensive care units. Many aspects of human disease pathology, including hepatic PMN infiltration, can be recapitulated in mice using an endotoxic shock model. Six quantitative trait loci that predispose to high infiltration of PMN in hepatic sinusoids after high-dose endotoxin administration were provisionally identified. Two of these loci, Hpi1 and Hpi2 on mouse chromosomes 5 and 13, were mapped to the significant and highly significant level using a low-resolution genome scan on 122 intercross animals. These loci interact epistatically to produce a high degree of PMN infiltration. Intercross and recombinant inbred strain mice with a specific genotype at these loci always had a high infiltration response, indicating that genotype analysis at just these two loci can accurately predict a high PMN infiltration response. Genetic predisposition to the degree of PMN infiltration in the inflammatory response in mice suggests that analogous genetic mechanisms occur in human beings that could be used for diagnostic purposes.  (+info)

IL-17 stimulates intraperitoneal neutrophil infiltration through the release of GRO alpha chemokine from mesothelial cells. (45/1555)

IL-17 is a newly discovered cytokine implicated in the regulation of hemopoiesis and inflammation. Because IL-17 production is restricted to activated T lymphocytes, the effects exerted by IL-17 may help one to understand the contribution of T cells to the inflammatory response. We investigated the role of IL-17 in leukocyte recruitment into the peritoneal cavity. Leukocyte infiltration in vivo was assessed in BALB/Cj mice. Effects of IL-17 on chemokine generation in vitro were examined in human peritoneal mesothelial cells (HPMC). Administration of IL-17 i.p. resulted in a selective recruitment of neutrophils into the peritoneum and increased levels of KC chemokine (murine homologue of human growth-related oncogene alpha (GROalpha). Pretreatment with anti-KC Ab significantly reduced the IL-17-driven neutrophil accumulation. Primary cultures of HPMC expressed IL-17 receptor mRNA. Exposure of HPMC to IL-17 led to a dose- and time-dependent induction of GROalpha mRNA and protein. Combination of IL-17 together with TNF-alpha resulted in an increased stability of GROalpha mRNA and synergistic release of GROalpha protein. Anti-IL-17 Ab blocked the effects of IL-17 in vitro and in vivo. IL-17 is capable of selectively recruiting neutrophils into the peritoneal cavity via the release of neutrophil-specific chemokines from the peritoneal mesothelium.  (+info)

Contribution of CD95 ligand-induced neutrophil infiltration to the bystander effect in p53 gene therapy for human cancer. (46/1555)

Clinical trials of adenoviral p53 gene therapy provide the evidence that the bystander effect induced by the wild-type p53 gene transfer on adjacent tumor cells contributes to tumor progression; its mechanism, however, remains uncharacterized. We report in this work that injection of adenovirus expressing the human wild-type p53 gene (Ad5CMVp53) into established human colorectal tumors in nu/nu mice resulted in CD95 ligand (CD95L) overexpression, followed by a massive neutrophil infiltration. Culture supernatants of human colorectal cancer cells infected with Ad5CMVp53 exhibited a potent chemotactic activity against murine polymorphonuclear neutrophils, which could be abolished by the anti-CD95L mAb (NOK-1). In vivo cell depletion experiments indicated that neutrophils were in part responsible for the antitumor effect of the Ad5CMVp53 infection. Our data directly suggest that overexpression of CD95L by the wild-type p53 gene transfer induces neutrophil infiltration into human colorectal tumors, which may play a critical role in the bystander effect of p53 gene therapy.  (+info)

Triggering Fc alpha-receptor I (CD89) recruits neutrophils as effector cells for CD20-directed antibody therapy. (47/1555)

CD20 Abs induce clinical responses in lymphoma patients, but there are considerable differences between individual patients. In (51)Cr release assays with whole blood as effector source, RAJI cells were effectively killed by a mouse/human chimeric IgG1 construct of CD20 Ab 1F5, whereas ARH-77 proved resistant to killing by this Ab. When whole blood was fractionated into plasma, mononuclear cells, or granulocytic effector cells, RAJI cells were effectively killed in the presence of complement-containing plasma, whereas the mature B cell line ARH-77 proved complement resistant. However, with a bispecific Ab (BsAb) against the myeloid receptor for IgA (CD89; FcalphaRI) and CD20, a broad range of B cell lines were effectively killed. FcalphaRI is expressed on monocytes/macrophages, neutrophils, and eosinophils. As the numbers of these effector cells and their functional activity can be enhanced by application of G-CSF or GM-CSF, lysis via (FcalphaRI x CD20) BsAb was significantly enhanced in blood from patients during therapy with these myeloid growth factors. Interestingly, the major effector cell population for this BsAb were polymorphonuclear neutrophils, which proved ineffective in killing malignant B cells with murine, chimeric IgG1, or FcgammaRI- or FcgammaRIII-directed BsAbs against CD20. Experiments with blood from human FcalphaRI/FcgammaRI double-transgenic mice showed corresponding results, allowing the establishment of relevant syngenic animal models in these mice. In conclusion, the combination of myeloid growth factors and an (FcalphaRI x CD20) BsAb may represent a promising approach to improve effector cell recruitment for CD20-directed lymphoma therapy.  (+info)

Interleukin-8 receptor knockout mice have subepithelial neutrophil entrapment and renal scarring following acute pyelonephritis. (48/1555)

Interleukin (IL)-8 receptor knockout (KO) mice were shown to have a dysfunctional neutrophil response to urinary tract infection and to develop renal scarring. Intravesical Escherichia coli infection stimulated epithelial chemokine secretion and IL-8 receptor expression in control mice. Neutrophils migrated through the tissues and crossed the epithelial barrier into the urinary tract lumen. In murine IL-8 receptor homologue (mIL-8Rh) KO mice, infection triggered a chemokine response, and neutrophils were recruited but failed to traverse the mucosal barrier and accumulated under the epithelium. After 7 days, control mice were healthy, and infection was cleared, but mIL-8Rh KO mice had swollen kidneys, with neutrophil abscesses and high numbers of bacteria. After 35 days, they developed kidney pathology and renal scarring. The results demonstrate that chemokine receptors drive transepithelial neutrophil migration. In their absence, the neutrophils are trapped, and the tissues are destroyed. This molecular deficiency may determine the progression from acute pyelonephritis to renal scarring.  (+info)