Single-polymer dynamics in steady shear flow. (1/531)

The conformational dynamics of individual, flexible polymers in steady shear flow were directly observed by the use of video fluorescence microscopy. The probability distribution for the molecular extension was determined as a function of shear rate, gamma;, for two different polymer relaxation times, tau. In contrast to the behavior in pure elongational flow, the average polymer extension in shear flow does not display a sharp coil-stretch transition. Large, aperiodic temporal fluctuations were observed, consistent with end-over-end tumbling of the molecule. The rate of these fluctuations (relative to the relaxation rate) increased as the Weissenberg number, gamma;tau, was increased.  (+info)

Two concentric protein shell structure with spikes of silkworm Bombyx mori cytoplasmic polyhedrosis virus revealed by small-angle neutron scattering using the contrast variation method. (2/531)

The overall and internal structures of the silkworm Bombyx mori cytoplasmic polyhedrosis virus was investigated by small-angle neutron scattering using the contrast variation method. Data were collected in aqueous buffer solutions containing 0, 50, 75, and 100% D2O in the q range of 0.002 to 0.0774 A-1 at 5 degrees C. The radius of gyration at infinite contrast was estimated to be 336 A. The contrast matching point of the virus was determined to correspond to about 50% D2O level, evidence that the virus is composed of protein and nucleic acid. The virus was basically spherical and had a diameter of about 700 A. The main feature of its structure is the clustering of protein into two concentric shells separated by about 100 A. Most of the RNA moieties are located in the central core and between these two protein shells. However, the distance distribution function P(r) showed a minor distribution beyond a distance of r = 700 A, with a maximum particle distance of the virus of 1350 A. This is indicative of an external structure region with very low scattering density, in addition to the basic spherical structure. This external region is thought to correspond to twelve pyramidal protruding spikes shown by electron microscopic studies.  (+info)

Hydration-coupled dynamics in proteins studied by neutron scattering and NMR: the case of the typical EF-hand calcium-binding parvalbumin. (3/531)

The influence of hydration on the internal dynamics of a typical EF-hand calciprotein, parvalbumin, was investigated by incoherent quasi-elastic neutron scattering (IQNS) and solid-state 13C-NMR spectroscopy using the powdered protein at different hydration levels. Both approaches establish an increase in protein dynamics upon progressive hydration above a threshold that only corresponds to partial coverage of the protein surface by the water molecules. Selective motions are apparent by NMR in the 10-ns time scale at the level of the polar lysyl side chains (externally located), as well as of more internally located side chains (from Ala and Ile), whereas IQNS monitors diffusive motions of hydrogen atoms in the protein at time scales up to 20 ps. Hydration-induced dynamics at the level of the abundant lysyl residues mainly involve the ammonium extremity of the side chain, as shown by NMR. The combined results suggest that peripheral water-protein interactions influence the protein dynamics in a global manner. There is a progressive induction of mobility at increasing hydration from the periphery toward the protein interior. This study gives a microscopic view of the structural and dynamic events following the hydration of a globular protein.  (+info)

Effect of spatial inhomogeneity in dielectric permittivity on DNA double layer formation. (4/531)

In solutions of tetramethylammonium (TMA+) DNA (double stranded) without added low-molecular-weight salt, the counterion radial density is calculated using the cylindrical Poisson-Boltzmann equation with a distance-dependent quasimacroscopic dielectric permittivity. Comparisons with small-angle neutron scattering data indicate that any inhomogeneity in dielectric permittivity is confined to one or two solvent layers from the DNA surface. At least for TMA+, which may be too large to penetrate the grooves of DNA to any significant extent, dielectric inhomogeneity modeled in this way has no detectable effect on the radial distribution.  (+info)

Anisotropic motion of cholesterol in oriented DPPC bilayers studied by quasielastic neutron scattering: the liquid-ordered phase. (5/531)

Quasielastic neutron scattering (QENS) at two energy resolutions (1 and 14 microeV) was employed to study high-frequency cholesterol motion in the liquid ordered phase (lo-phase) of oriented multilayers of dipalmitoylphosphatidylcholine at three temperatures: T = 20 degrees C, T = 36 degrees C, and T = 50 degrees C. We studied two orientations of the bilayer stack with respect to the incident neutron beam. This and the two energy resolutions for each orientation allowed us to determine the cholesterol dynamics parallel to the normal of the membrane stack and in the plane of the membrane separately at two different time scales in the GHz range. We find a surprisingly high, model-independent motional anisotropy of cholesterol within the bilayer. The data analysis using explicit models of molecular motion suggests a superposition of two motions of cholesterol: an out-of-plane diffusion of the molecule parallel to the bilayer normal combined with a locally confined motion within the bilayer plane. The rather high amplitude of the out-of-plane diffusion observed at higher temperatures (T >/= 36 degrees C) strongly suggests that cholesterol can move between the opposite leaflets of the bilayer while it remains predominantly confined within its host monolayer at lower temperatures (T = 20 degrees C). The locally confined in-plane cholesterol motion is dominated by discrete, large-angle rotational jumps of the steroid body rather than a quasicontinous rotational diffusion by small angle jumps. We observe a significant increase of the rotational jump rate between T = 20 degrees C and T = 36 degrees C, whereas a further temperature increase to T = 50 degrees C leaves this rate essentially unchanged.  (+info)

Evolution of the internal dynamics of two globular proteins from dry powder to solution. (6/531)

Myoglobin and lysozyme picosecond internal dynamics in solution is compared to that in hydrated powders by quasielastic incoherent neutron scattering. This technique is sensitive to the motions of the nonexchangeable hydrogen atoms in a sample. Because these are homogeneously distributed throughout the protein structure, the average dynamics of the protein is described. We first propose an original data treatment to deal with the protein global motions in the case of solution samples. The validity of this treatment is checked by comparison with classical measurements of the diffusion constants. The evolution with the scattering vector of the width and relative contribution of the quasielastic component was then used to derive information on the amount of local diffusive motions and their characteristic average relaxation time. From dry powder to coverage by one water layer, the surface side chains progressively acquire the possibility to diffuse locally. On subsequent hydration, the main effect of water is to improve the rate of these diffusive motions. Motions with higher average amplitude occur in solution, about three times more than for a hydrated powder at complete coverage, with a shorter average relaxation time, approximately 4.5 ps compared to 9.4 ps for one water monolayer.  (+info)

Solution structure of copper ion-induced molecular aggregates of tyrosine melanin. (7/531)

Melanin, the ubiquitous biological pigment, provides photoprotection by efficient filtration of light and also by its antioxidant behavior. In solutions of synthetic melanin, both optical and antioxidant behavior are affected by the aggregation states of melanin. We have utilized small-angle x-ray and neutron scattering to determine the molecular dimensions of synthetic tyrosine melanin in its unaggregated state in D(2)O and H(2)O to study the structure of melanin aggregates formed in the presence of copper ions at various copper-to-melanin molar ratios. In the absence of copper ions, or at low copper ion concentrations, tyrosine melanin is present in solution as a sheet-like particle with a mean thickness of 12.5 A and a lateral extent of approximately 54 A. At a copper-to-melanin molar ratio of 0.6, melanin aggregates to form long, rod-like structures with a radius of 32 A. At a higher copper ion concentration, with a copper-to-melanin ratio of 1.0, these rod-like structures further aggregate, forming sheet-like structures with a mean thickness of 51 A. A change in the charge of the ionizable groups induced by the addition of copper ions is proposed to account for part of the aggregation. The data also support a model for the copper-induced aggregation of melanin driven by pi stacking assisted by peripheral Cu(2+) complexation. The relationship between our results and a previous hypothesis for reduced cellular damage from bound-to-melanin redox metal ions is also discussed.  (+info)

Polymer-cushioned bilayers. I. A structural study of various preparation methods using neutron reflectometry. (8/531)

This neutron reflectometry study evaluates the structures resulting from different methods of preparing polymer-cushioned lipid bilayers. Four different techniques to deposit a dimyristoylphosphatidylcholine (DMPC) bilayer onto a polyethylenimine (PEI)-coated quartz substrate were examined: 1) vesicle adsorption onto a previously dried polymer layer; 2) vesicle adsorption onto a bare substrate, followed by polymer adsorption; and 3, 4) Langmuir-Blodgett vertical deposition of a lipid monolayer spread over a polymer-containing subphase to form a polymer-supported lipid monolayer, followed by formation of the outer lipid monolayer by either 3) horizontal deposition of the lipid monolayer or 4) vesicle adsorption. We show that the initial conditions of the polymer layer are a critical factor for the successful formation of our desired structure, i.e., a continuous bilayer atop a hydrated PEI layer. Our desired structure was found for all methods investigated except the horizontal deposition. The interaction forces between these polymer-supported bilayers are investigated in a separate paper (Wong, J. Y., C. K. Park, M. Seitz, and J. Israelachvili. 1999. Biophys. J. 77:1458-1468), which indicate that the presence of the polymer cushion significantly alters the interaction potential. These polymer-supported bilayers could serve as model systems for the study of transmembrane proteins under conditions more closely mimicking real cellular membrane environments.  (+info)